rce
(Yoo dotanes TH 87
f’ﬂ—féﬁ og/ Vels (-3

CHAPTER 2

PAGING

2.1 Introduction

+ When multiprogramming techniques are being used with large computer systes,
problems arise over cofe store organisation. Programs are stored both in the core -
store and in the backing store. As some programs are deleted and new programs
are started, there is an interchange of programs between these two locations.
Programs are of varying length and a new program will not necessarily fit into the
'gap' in the core store created by a deleted program. I such 'gaps' were left
unused, this would limit the number of programs *......x could be held in the core
store and increase the requirement for transfers between the core store and backing
store. One method of overcoming this problem is to move programs within the core
store to fill up any 'gaps'. This method, used by the Datum and Limit system, is
accepteble on small machines but with the larger syst ms it becomes an impracticably

slow process.

Another problem concerns programs and L. 0Zrams (routines) which
can be employed by different users. It may be a coraplete program for wiich each

user supplies his own set of data or a routine which can be incorporated in various
programs. With the Datum and Limit sysf,em, a programmer Ciu on’v refer o
addresses within the area allocated to his program and any general Iiu..s (Jule

_ procedure) must actually pe moorpomtedm this program. It would obviously be
econommal to keep just one copy of sueh pure procedures in the core sto”e and allow

any user to access them if required.

2/1

t i
2.2 The Paging System

2.2.1 Outline

The Paging system was 1ntroduced to overcome the problems outlined above

and the main features of this system are:

1) All programs are divided into blocks of 1K word length. . For convenience,
a group of 64 contiguous blocks is termed a segment. -The format of an

address is thus:

) I

CH SEGMENT , BLOCK " WORD
23 22 21 16 15 0 9 : 0

2) The store is divided into pages of 1K word length.
3) Any block of program may be inserted in any available page in the store.

4) A set of Paging tables enable any block starting address to be correlated
’with the appropriate page starting address. Bits 10-21 of a relative
(virtual) address can then be replaced by the corresponding bits of the
absolute address. Note that bits 0-9 specify a WOrd.within a 1K block

or page and are thue the same for relative and absolute addresses.

5) All information is held in the backmg store and copi >d into the core store
as required. Ifa page is wrltten to in the core store, the backmo store

‘must be updated before the core store page is overwmtten ‘

6) The organisation of programs in the core store and the transfer of
programs between the core store and backing store is controlled by the
supervisor programs George 4 and Executive.

i

2/2

2.2.2 Advantages
The advantages claimed for the Paging system are as follows:
1) It resultsin faster store accesses than ﬁhev Datum and Limit system.

2) The programmer is not confined to 2 small continuous range of addresses.
| i v
3) It is not necessary to shift the remaining programs in the store to close

up the 'gap' ‘created when a program is deleted.

4) Programs of low priority and parts of programs can be held in the

backing store.

5) If the program refers to a block in the backing store, this block 'will

automatically be brought into the core store.

6) If a routine is used by more than one prdgram; only one copy of the
routine need be kept in the store. Such routines are held in a common
area of store (program O's store area) and are made available to an
object program by inserting replacement afdresses in-the tables for

that program

7 The Paging tables may be set up so that one copy of a program can be

used simultaneously by two or more users operating with different data. '
2.2.3 Organisation

The Paging system is organised by the supervisor programs George 4 and
Executive. An obvious requifement is the facility to convert (or translate) a ‘
| relative address into an absolute addréss. The sof‘cwaare maintains three basic
types of table, accessible to the hardware, Wh‘."LCh permit this. The basic tables are
the Program Table, the Segment Tables (one per program) and the Page Tables

(nominally 16, 32 or 64 for each program).

2/3

Note that on 1906A, the paging hardware is referred to as the Address Translator.
Some other functions of the software are:

1) Allocating pages of core store to 2 program (quota fixing). This allocation

may be based on the program's past requirement for pages.

2) Swapping (new_) programs in to the core store and (deleted) programs

out to the baclcing store.

3) Swapping a program's pages in and out of core store (page turning).
Note that when a program requires a page from the backing store, this
is swapped for one of the program's pages in the core store: i.e. the

program's quota of pages in core store remains unchanged.

4) Arranging for certain pages of store to be shared by different programs.
A program is allowed access to a shared page by inserting replacement

addresses in the basic tables for that program.

To facilitate these operations, the software maintains various other tables
which are not accessible‘by hardware. Some of these tables are described briefly
here but for fuller information the reader should refer to the appropriate software

| i

manual.

2.3 The basic Paging Tables
2.3.1 The Program Table

The Program Table contains a two-word entry for each program. The format

of the entry is: .

- 2/4

Word N
SEGMENT | STARTING ADDRESS OF PROGRAM'S
!TABLE E o SEGMENT TABLE
LENGTH . ~ ’
(2 bits) , : (22 bits)
23 22 . 21 O | 0.

'I‘he m. s.two bits indicate the number of entﬁes in the’ Segment Table:

-~ . . Bit23 22
0 . 0 Not used (by hardware)
' -0 1 16 entries |
- 1 0 32 entries
1 1 64 entries

Word N +1
G register information (and Limit in D & L mode)
When a program is entered, the 172E instruction loads the contents of word N
F " into the Address Translator PD register and the contents of word N + 1 into the G
_ register. ‘

2.3.2 The Segment Table

A program's Segment Table has 16,32'or 64 single word entries. The format

of an entry may be:

| — —]
| PAGE | STARTING ADDRESS OF ‘ Not | PAGE TABLE
TABLE | A PAGE TABLE | Used |NOTIN
% LENGTH | (18 bits) ’ l | CORE STORE
1 (2 bits) L ; I (1 bit).
/‘”‘H\A . . . ’
(23 22 .21 | o | 4 3 1 o 0

2/5

The m.s. two bits specify the number of entries in the Page Table or

replacement.
© Bit 23 22
. sﬂ.q@.r,,,fi\‘
0 0 Replacement (shared page)
0 1 16 entries - '
1 0 32 entries
1 i 64 entries

Note that as 'a Page Table contains at least 16 entries, it is only necessary
to record the m. s. 18 bits of the Page Table starting address (bits 0-3 will always
be zero). When replacement is specified, the replacement address occupies bits

' 0-21 of the entry.
2.3.3 The Page Table (Segment Description)

The Page Table actually forms pért. of a Segmén’c Description (SD) Table.

The SD Table contains a two word entry for each page in a segment and the first

§ AVAILABILITY | PAGE STARTING | PERMISSION "Not

i

% BITS ADDRESS BITS Used
! (2 bits) (12 bits) | (8 bits) 1

23 22 21 1009 i 7 6 , 0

The m.s. two bits indicate the availability of the page or replacement:

i

Bit23 - 22
0 0 ' Replacement (shared page)
0 1 Page not in core 'store
1 0o " Page in core store and available
1 1 Page in core store but not'. available

When replacement is speciﬁed, ‘;he,rep’lacement address occupies bits 0—21.

of the entry .

2/6 |

words of each entry comprise the Page Table. The format of a Page Table entry is:

SN

)

The significance of the permission bits is:

Bit T=1 " This page may be written to (Write)

Bit8 =1 ‘ Operands may be read from this page (Read)

Bit9 =1 Instructions may be read from this page (Obey)

The other part of the SD Table (1 . the second word of each entry) is not
accessible to the hardware. This part of the table hsts the backing store location

(or home) of each page t_egether with other information about the page.

2.4 Address Translation.

A programmer's relative address may be translated into an absolute address ‘

| by reference to the three basic tables described in section 2.3, The stages are

as follows:

1) The segment part of the relative address (bits 16-21) is added to the
Segment Table starting address (in PD) to obtain the address of the
relevant entry in the Segment Table. This entry provides the starting

address of the appropriate Page Table.

2) The address of the required entry in the Page Table is obtained by
OR'ing the block par’c of the relative address (its 10-15) with the Page
Table starting address (in bit positions 0-5). 'i‘his entry yields the

required page starting address.

3) Bits 10-21 of the relative addreés-are replaced by the page starting

address to form the required absolute address.

" 9.5 The Current Page Registers (CPR's)

To obviate the necessity of referring t;o three different tables whenever an
address translation is required the Addrese Translator is provided with 16 CPR's,
These hold the page starting addresses of 16 blocks of program currently in use.
A block starting address is stored in one half of the CPR as shown: |

2/7

CPR Not BLOCK STARTING Not

IN ' Used ADDRESS Used
USE - .
(1 bit) : (12 bits)

23 22 .21 . 10 9 | 0

The other half of the CPR holds the corresponding page startingbaddress:

i -]
Not |PAGE STARTING PERMISSION Not USE
Used ADDRESS BITS Used BITS
(12 bits) ' (3 bits) | (3 Dbits)

23 22 21 . 10 9 7 6 3 2 ‘ 0

Note that bits 7-21 afe a copy of the corresponding bits in the Page Table

entry. The significance of the Use Bits is:

Bit0=1 . Page has been written to
Bitl=1 Page has been read from
Bit2=1 , Page has been obeyed.

Associated with each CPR is a. lock bit. CPR's may be locked to protect

their contents as follows:

a) CPRO, containing block 0 of the program, is loaded and locked when

‘h

the program is entered. (The first store access loads accwmuicior X0 ©

from'relative address 0).. This CPR remains locked until a program

i

_change occurs.

b) The CPR containing the currentfinstruction is kept locked.

c) Up to four CPR's may beslocked. to facilitate the execution of the multi-
operand orders 116, 1’26.and 127.

2/8

. TN

When an address translation is requested the block part of the relative address

is simultaneously compared with the block starting addresses in the 16 CPR's. If

equivalence is found it only remains to read the required page starting address from

the other half of the CPR. Note that the address can only be used however, if the
type of store access required is allowed by the Permission Bits. Also, the type

of store access is recorded in the Use Bits.

If equivalence is ndt found in a CPR, the required page starting address must
be traced (as in section 2.4) and vloaded into a CPR, together with the block starting
address. The CPR to be loaded is selected by a Next Vacant Pége (N'yP) Counter. '
This counter will be pointing to the CPR whose contents (if any) are 1eastilike1y to

be required. It is not allowed to point to a locked CPR and it never points to a CPR

‘which has just been loaded. If the CPR selected for loading already contains a store

page address, its In Use bit will be set. In this case, the usage of the old page is
recorded in a Store Use Tablé (see section 2.6.1) before the CPR is loaded with the

new page address.

2.6 Other Paging Tables

2.6.1 Executive tables

There are two tables in Executive's store area, namely the Store Use Table

(SUT) and the Store Lockdown Table (SLOT). SUT may be accessed by the hardware

“and both tables are accessible by George 4. ‘Each entry in SUT refers to a particular

page of store and is half a word long:

i' [| i § _ ; i X % .
§Not z PROCESSOR | USE iNot ! PROCESSOR '.USE .
4 H 7

* s

{ Used NUMBER | BITS Used ; NUMBER BITS

% ‘ (Bt significant) | (3 bits) | | (Bit significant)|(3 bits)

23 22 15 14 12 11 10 32 0
Even page : : Odd page

2/9

If a CPR which is In Use is unloaded, its Use Bits are recorded in the
“appropriate SUT entry. Note that this does not destroy any Use Bits already_
set in the SUT entry. When a CPR is loaded, the Use Bits in the SUT entry are
loaded into the CPR together with the page address. The Processor Number bits
cater for multiprocessor configurations. They identify the processor which is-
using a page of store at any particular time, i.e. the processor which holds the
page address in one of its CPR's. The Processor Number is deleted when a

CPR is unloaded and written in when the CPR is loaded.

The startihg address of the SUT is some fixed number (say"T)., which is a
multiple of 2K. The address of the entry for a page p therefore is T + p/2. Note
that when a SUT access is required, p will be the page address:inthe CPR which

is being unloaded or has just been loaded.

The other Executive Table SLOT also contains a half word entry for each
page of store. Part of a SLOT entry is the Lockdown Count for the page. This gives .
a indication of the peripheral transfers involving the page and other processes

which require that this page should be kept in the core store.

2.6.2 George 4 tables

There are two tables in George 4's store area which are used only by George
4. These are the George Lockdown Table (GLOT) and the Page Usage Table
(GPUT). In both these tables, an entry refers to a pax;tiéular page of store. A
GLOT entry is half a word long. It contains a Lockdown Count which is referred
to when page turning. Thatis, when a program's page has to be swéppéd out of

the core store (to make room for a new page) the page selected will not be a

;-
page with a non-zero Lockdown Count. The GLOT entry also contains a copy of

the Use Bits from SUT. - =
A GPUT entry is one word long. The entry is significant only if the page is
occupied by an object program, in which case the entry contains information about

the usage of the page. This information includes:

2/10

N

NS

./

.

N

)

c)

d)

A Dit which indicates whether or not the page is occupied by an

object program..

A decay count of the aumber of page swaps since the page was last

accessed. -

The number of programs Wiﬂ:i access to the page. (This number will

only be greate,i' than 1 if it is a shared page).

A more permanent record of the Use Bits in SUT and GLOT.

2/11

CHAPTER 2
ADDRESS TRANSLATOR

2.1 Introduction ‘ 0OD3

The address translator contains the hardware necessary to convert a relative
address into an absolute address using either the datum and limit or paging systems.
The relative address enters the translator from the instruction unit via the J highway.
When the absolute address has been formed it is placed in one or more of the three
address registers AA, AY & AW where it is available to address the store. Absolute
addresses and literals bypass the translation logic and are loaded directly into the -

- AA register. Literal operands are then conveyed directly to the fixed point unit.

T In the paging system the most significant twelve bits of the relative address

~ are compared with the block starting addresses in the sixteen current page registers.
If equivalence is found, then the corresponding page starting address is gated out to
form the most significant twelve bits of the absolute address. When equivalence is
not found the required page starting address is traced by reference to the program,
segment and page tables in turn using the Table Search routine. The page starting
‘address and the associated block starting address are then loaded into the current
page register indicated by the next Vacant page counter. Equivalence will then be
found

In the datum and limit system, the relative address is datumised and the
absolute address so obtained is then compared with the limit address.

Operations in the address translator are controlled by the address translator
microprogram (OD12),

- 2.2 Block address registers (PBx) . | ' 0D3/J2

These sixteen registers which form a part of the less significant word of each

- current page register hold the starting address of a block of program. Each tweive
bit register (PB0010-21 to PB1510~21) is loaded from AA10-21 by strobe NTPB which
is produced under the following conditions:~ : '

a) When a current page register is bemfr 1oaded from store at the end of the
table search microprogram.

b) When the contents of an k reolster are being written 1nto the odd half
of a ourrent page register by a 171E mstrucuon

The data is routed to the appropriate re@ist'er by the decoded address signals
ANVP00-15. The output is taken to the equlvalence check logic and also to the TB
and PR highways. :

‘ 2/1

2.3 Block address equivalence ~ 0OD3/G2 -

, The block address in each current page register is compared with the most
significant twelve bits of the relative address on the J highway (J10-21). If equivalence |
is found the signal EQx is generated, providing that the in use bit PBx23 and NEQT are
set and the write sequence is not in operation. The signal EQx generates NPTx Wthh
gates the page starting address from PPx onto the ’I‘P highway.

2.4 DPage address registers (PPx) - ’ OD3/K2

These sixteen registers, which form part of the more significant word of each
current page register, hold the starting address of a 1K page of store containing the
block of program specified by the corresponding block starting address. Each twelve
bit register (PP0010-21 to PP1510-21) is loaded from AA10-21 by strobe NTPP which ,
is produced by the microprogram at the following times:~ o

a) ~ When a current page register is being loaded from store at the end of the
table search microprogram.

b) When the contents of an X register are being ertten mto the even half of
a current page register by a 1711] instruction. V

The data is routed to the 'appropriate register by the decoded address signals

ANVPO00-15. If equivalence has been found the contents of this register are gated
onto the TP and PR highways to convert a relative address into an absolute one.

2.5 Inuse bistables (PBx23) . OD3/G2

These sixteen bistable circuits (PB0023 to PB1523) form hit 25 of the less
significant word of each current page register. They are used 1o indicate that the
current page register is in use, and must therefore be unloaded before it can be
overwritten. The bistable is set by NTPB and ANVPx at the same time as the
block address is loaded, and is reset by NRU and ANVPx during the unloadmg
part of the table search sequence. : :

Bits 00-09, 21 and 22 of the less significant Word (PBx) of each current
page register are not used. f

2.6 Use bistables (PPx00-02) : ‘ OD3/L2
] .

These sixteen sets of three bistable circuits (PP0000-02 to PP1500-02) form
part of the more significant part of the current page registers. They are used to
record the types of store access which have taken place while the page of store is
defined in the current page reglster ‘The significance and logic of each bit is as
follows:~ Lot ' :

a /o

)

a) Bit 00 indicates that an operand has been written to the page. It is set
by NTWU and NPTx for write operands (WOP).

b) Bit 01 indicates that an operand has been read from the page. It isAset
by NTRU and NPTx for read operands (RQRD).

c) Bit 02 indicates that an instruction has been obeyed from the page. Itis
set by NTOU and NPTx for instructions (RQI).

All these bits are reset by NRU and ANVPx durmg the unloachng part of the table
search sequence. _

2.7 Permission bits and decoding (PPx07-09) - OD3/L2

Bits 07-09 of the more sigﬁificant part of each current page register record
the type of store’access Wthh is permitted for this page of store. The significance
of each bit is:~ '

a) Bitor - An operand may write to this page
by Bit 08 An operand may be read from this page
¢y Bit 09 ’ .. An instruction may be read from this page

These three bits are loaded in the same way and at the same time as the page
starting address by strobe NTPP and ANVPx. '

. The bits are decoded with WOP, RQRD and RQI respectively, and the signal
PERMIT is only generated if the app‘ropriate permission bit is active. :

Bits 03-06, 22 and 23 of the more significant woxd ¢f cach current page register
are not used.

2.8 = Lock bistables (PLKx) o ‘ OD3/F2

Each current page register has a bistable circuit associated with it to indicate
that it is locked and may not be unloaded and overwritten. The bistable circuit is
set by NTLK and NPTx when the contents of the current page register are likely to
be required. While it is set the contents of the current page register cannot be
unloaded as the next vacant page counter is not allowed to point to a locked register.
All thé locked bistables except PLKOO are unlocked by NTUN when an instruction
address in a new page (RQNP) or a jump address (RQJ) is being translated. All the
locked bistables are unlocked by NTUNOO (for PLKO00) and NTUN during the part of the
172E and 173E microprogram which unloads all the current page register. Individual
lock bistables may be unlocked by NTUK within 40ns of being locked. This mechanism
is used to step on the next vacant page counter so that it always points to the'least used -
current page register. » :

2/3

Up to six current page registers may
refers to the first 1K words of the program

be locked at any time. Register 00, which
is locked when the program is entered and

remains locked until a program change occurs. The register containing the current
instruction address is kept locked, and up to four others (defining transfer areas) may

be locked when a multi-operand instruction

2.9 Next vacant page counter (NVP)

(116, 126, 127) is in progress.

OD3/E2

Whenever equivalence cannot be found in the paging system, then a current page
register must be unloaded (if it is in use) and then loaded with the required block and
page addresses. The next vacant page count ensures that the current page register which is

unloaded is the one whose contents are leas

t likely to be required. Each time a paging

access is made and equivalence is found, the equivalent register is temporarily locked

(NTLX) and then unlocked (NTUK) within 40

ns. The counter is not allowed to point to a

locked register, so if it happens to be pointing to the (locked) equivalent register the ~

signal EQVP is generated and it will be stepped on to the next current page register addre -

by strobe NTVP. If the following registers

are also locked then the counter will be stepped

on again until it points toan unl_ocked register.

The four bit counter is incremented by one each time that strobe NTVP.is received,

and may be reset to zero by NRVP which is
172E and 173 instructions. The four bits
selection signals ANVPOO to ANVP15.

produced during the unload sequence of the
are decoded to give the current page register

2.10 Speoial register address register (APV) . OD3/D2

The current page registers may be read from or written to as special registers

" 1024-1055 using 170E or 171E instructions
page parts and the odd addresses the block

respectively. The even addresses read the
parts of the current page registers. The

address is routed via the J highway from the instruction unit to the address translator
where the least significant five bits (J00-04) are loaded into the special register address
register APV0~-4 by strobe NTAPV, Thisis produced at the beginning of the 170E and

171E address translator microprograms.

The least significant bit (APV0) is used by the

microprogram to select the appropriate half of the current page register. The other .
four bits (APV1-4) are decoded to give the current page register number using the same
logic which decodes the next vacant page counter: address. This only takes place when

f L - .

NAN is set. ‘

2.11 Fan-in to PR highway

i

H

OD3/H4, K4, M4

1

The PR highway is used to convey data from the appropriate part of the current
page register to the short code fixed point unit and to the mark in use table held in the
PW register. The data is obtained from the less significant word via the TB highway
when NBV is set, and from the more significant word via the TP highway when NPV is

set. NPV or NBV are set during the 170E

instruction which reads half of the contents

of a current page register depending on whether the address is even oY odd. NPV is
also set when the mark in use table is being updated during the table search sequence.

a /A

)

)

2,12 Mark in use register (PW) : OD3/A8

This twenty four bit register holds an updated use table entry while it is being
written to store. The word read from the use table in store contains the entries for
two pages. Bits 00-11 refer to an odd page and bits 12-23 to an even page. When
loading PW from RE the entry referring to the page in the current page register
which is not being unloaded is strobed into PW unchanged by strobe NTPW. For the
entry which is being updated however, the bit significant processor number (bits 03-10
or 15-22) is inhibited by NUWAM or NUWNZ. Also the use bits from the current page
register being unloaded which are available ‘on PRO0-02 are ored into PW00-02 or
12-14 with the use bits from the store (RE00-02, or 12-14). The complete pair of
use table entries is then written back to store via the PW highway.

When the current page register has subsequently been reloaded it must be
marked in use in the use table. The use table entry is again read out to PW and this
time the processor number (PROC7-0) is loaded into PW03-10 (NMWAM) or PW15-22
(NMWNZ). The updated entry is again written back to store.

2.13 Segment table base address register (PD) . OD3/A5

This register holds the program's segment table base address, and iz _ooued
by a 172E instruction when the program'is entered. The address is read from store
(word N) and routed to the PD register on the RE highway and is strobed into the
register by NTD. Bits 00-05 of PD are routed to the segment table adder for addition
of the segment part of the relative address and bits 06-21 go directly to the entries to

-the T highway. Bits 22 and 23 are used to specify the segment table length as follows:-

Bit 23 22
' G 0 Not used
0 1 16 entries
1 0 32 entries
1 i 64 entiries
2.14 Segment table adder ' P OD3/B5

! .
This adder is used to add the segment part .of the relative address (on J16-21) to

~the segment table base address in the PD registér. A simplifie. diagram of one slice

of logic is shown in Fig. 2.1 together with the associated truth tables. A block diagram
of the carry system is given in Fig.2.2. It will be seen that the carries are formed in
two blocks of three bits each. Carries in each biook are formed in parallel but the
block carry is in series, The carries from bits 4 to 6 are decoded along with the table
length indicator bits (PD22-23) to determine when the segment is out of range (SOOR).
The output of the adder is taken to the entry gates to the T highway via the PDS highway.

[]
S~
ot

2.15 Datum address register (DT) : , , 0OD3/B1

his sixteen bit register (DT06-21) is used to hold the datum address of the
program. It is loaded when the program is entered from word N specified by a 172E
instruction. The data is routed from store via the RE highway and is strobed into
the register by signal NTD. The output is taken to the datum adder except during
the first part of a datum and limit 177 E instruction (NDLC active).

2.16 Datum adder o ‘ 0D3/C2 ;

Thé sixteen bit datum adder is used to add the most significant sixteen bits
of the relative address on J06-21 to the datum address to give the absolute address, '
which is sent to the T highway entry gates via the DTS highway. The absolute address
is also checked to ensure that it is less than the limit address. '

The basic logic of one slice of the adder is shown in Fig. 2.3 together with its
associated truth tables. A block diagram showing the carry system is given in Fig.2.4.
The carry system is divided into four blocks of four bits each. Individual carries in
the first block are produced in series and in the other three blocks in parallel. The
block carries are generated in parallel. If the carry into bit 22 is active (DTCY22)
then a reservation fzil is signalled (RESFL) becausé the absolute address is greater
than 4M-~1. : ‘ '

2.17 Limit address register (LM) ' - OD3/A1

A sixteen bit register (LMO06-21) which holds the limit address of the program.
It is loaded when the program is entered from word N+ 1 specified by a 172E instruction.
The data is routed from store via the RE highway and is strobed into the register by
signal NTLM. The output is taken to limit check logic and also to the zero detection
logic which indicates a zero limit address (4M) by the signal LZERO,

2.18 Limit-check ; OD3/B3

This checks the datumised address to ensu::pe that it-is less than the limit
address. The limit address in LM is subtracted from the datumised address obtained
from the output of the datum adder. The basic logic is shown in Fig. 2.5 together
with the relevant truth table. The logic is only used to determine whether the carry

into bit 22 is active or not; all other logic is omitted as it is necessary).

If the datumised address is greater than or equal to the limit, this constitutes
o reservation fail and it is detected by the absence of carry into bit 22 of the limit
checker (LMCY22). Note however that if the program is at the top of the store, its
limit address (¢M) will be represented by all zeros (LZERO) and there will be no
carry into bit 22. In this particular case RESFL is not generated.

¥

O

2.19 Tan-in to T highway o ' OD3/J7

This twenty four bit highway is used to load the absolute address buffers. It
receives data from a number of sources as shown below:- ' '

a)

b)

d)\

e)

From store via the RE highway when slack gate NST is set. This is used -
by the table search microprogram when the page table base address is
being loaded into AA, and also when the page starting address is being
loaded into a current page register via the AA register. It is also used

in a similar way by a 171E instruction which is Wrmng to half a current
page register as a special register.

From a fixed number UT11-21 to T11~-21 and from a page starting
address in a current page register TP11-21 to T00~-10 when NUT is set.
This is used to obtain the address of the mar k inuse table entry relating
to a particular pair of current page registers. The fixed number UT11-21

is wired in using C3 elements.

The segment table address is gated from the segment table adder PDSO0 0-05
to T00-05 and the segment base address register PD06-21 to T06-21 when
slack gate NDT is active. . This address is used to obtain the appropriate
page table base address from store.

“From J highway J10-15 to T00-05 when slack gate NJPT is active. This is

used to gate the page part of the relative address into the bottom six bits
of the page table base address which has already been loaded into AA by
the table search microprogram. When a page table has only 16 or 32
entries, bits 04-05 of the page table base address may be active. These
are preserved by oring AA04-05 with J14-15 when NJPT is set.

From the J highway to the T highway on the following occasions:-

1) Loading the page starting address into a current page register.
' J10-21 gated to T10-21 by NJTLZ and NWT.

2) Loading an absolute address directly from the J highway when the
instruction is a literal or has an absolute address.
J00-05 gated to T00-05 by NJTAF and NWT,
J06-09 gated to T06-09 by NJTGK and NWT,
J10-21 gated to T10-21 by NJTLZ and NWT.

3) The least significant ten bits of a relative address on the J highway
" are combined with the page starting address from the current page
register to give the absolute address in paging mode.
J00-05 gated to T00-05 to T00-05 by NJTAF and N"WT
J06-09 gated to T06-09 by NJTGK and NWT.

2/7

' h)

4) The least significant six bits of a relative address on the J highway -
are combined with the datumised address from the datum adder to
.give the absolute address in datum and limit mode. '
J00-05 gated to T00-05 by NJTAF and NWT.

- The page starting address from PPx and the'TP highway (TP10-21) is

gated by NPT & NWT to T10-21 to form a complete abso'ute address
with the appropriate parts of the relative address.

The datumised address from the output of the datum adder (DTSOG-Zl)
is gated by NDDT & NWT to form a complete absolute address with the
part of the relative address from the J highway. S

A write operand address ‘held in the AW register is routed to the AA
register via the slack gate NWT and the T highway. This slack gate
inhibits the gates from the J, PT and DTS highways a8 these might

possibly be set at the same time as NWT.

2.20 Absolute operand address register (AA) ' OD3/F7

This twenty four bit register is used to hold the absolute address of an operand
until the address is accepted by store. It receives its input from the T highvar .o
Section 2.19). The bistable circuits are split into two groups; AA00-05 are strobed
by NTAAF, and AA06-23 by NTAGZ. Normally both strobes occur simultaneously,
but when the page table address is being formed only NTAAF is generated and when

the page starting address is being loaded into a current page register only NTAGZ
is active. The output of the register is taken to the distributor via the AH highway, .
to the short code fixed point unit for literal operands, to the.current page registers
for loading purposes and to the decoding logic. Bits AA00,22 & 23 are decoded to
provide signals for the microprogram. These are as follows:~ Co

.a)

b)

c)

d)

2/8

For a segment table entry; PTAB = AAQ0Q indicates that the page table
is not in the core store.

For a segment table or page table entry; PREP (AA22-23 are both zero)
indicates a replacement address:

For a page starting address; PAV (AA22 is zero, AA23 is one) indicates
that the page is in the core store and is available.

For a page table base address; POOR indicates that the page is out of
range. TLs logic decodes AA22-23 and J14-15 (relative address most
significant page bits) to ensure that the page table address will be within
the length of the table specified. : '

N

2.21 Absolute instruction address register (AY) OD3/H1

This sixteen bit register holds the most significant part of the current
translated instruction address. The least significant part of the address is obtained
from the AC register in the instruction unit (see Section 2.23). The address is
strobed into the register by NTY from the h1<mway (T06-21), whenever the
instruction address is translated for a sequencer new pade request or a successful
jump.

2.22 Absolute write operand address register (AW) OD3/K17

A write operand address on the T highway is always loaded into AA, but it is
not used at this time and AA is set free. The address is also loaded into the AW
register by strobe NTW where it is held until the write cycle is about to take place.
The twenty two bit write address is then transferred back to the AA register via
the slack gate NWT and the T hlghway, from where it can be used to address the
store.

2.23 Fan-in to AH highway | OD3/J8

This twenty two bit highway is used to address the store via the dis.i.ouior. ‘
Operand addresses are routed from AA00-21 when slack gate NAAH is set. Instruction.
addresses are provided from the AY and AC registers when NYAH is active. In '
paging mode the address is formed from AC00-09 and AY10-21, while in datum and
limit mode it is formed from ACO00-05 and AY06-21.

P

PDA -

J(A+18) e

PDA J(A-Hb) PDGA POTA EQUIVA {
o @ @ o 1 ’
1 ® @ 1 o
] 1] i o]
1 1 1 1 1

EQUIVA | PDCYA PDSA

BASIC LOGIC

CARRY INTQ BIT (Dl'/‘\

(~ :)PDG@(D-@}
POTQQ~-®3

@2@

‘DI@ .'

PDTQ4 =035

H

@4@

O

POCYQE

NUMBERS IN CIRCLES INDICATE
COUNTING FROM THE PD AND J HIGHWAYS

¥
!PDCY@‘i

@5@

TO SEGMENT OUT OF RANGE

DETECTION LOGIC

NUMBER OF ELEMENTS USED

FIG. 2.2 SEGMENT TABLE ADDER CARRY SYSTEM

DTa

- £
‘ DGA
38 e) BG8 e

OTA A oca | o} 1 om 0 pca | ovsa :
o]] o} o} o]
1]] 1 ° ¢ 1 i
P 1 @ 1 [} 1
3
1 1 1 i P i]
¢ 1
i
¢ . P)
: o [P
1 1

l j

FiG 2.3 DATUM ADDER BASIC LOSI o

@_

N
OTP6 EEDGQ)b?} ‘ ' : CARRY_INTO BIT 7
ol DICYD7 : @
focos | forcvoet , : 8. @ .
DCOT-09 10CO9 & 50ch¢9§ ¢9 @
BTTpT69 { ; i
_ ’ 7 .
DCH pTe . 19
i DCIp E } 5! YKD% ®
r T ocu . oTCY | I @
et : S ' et 1 1] 12
, , Lo f Jorcyiz g @
(DRuL=is .
BTIE-13 : "
. 1 i 3
L : .*'"g oe13 forcyis | @
BDG2 , . :
. : \; 4 1l [14 =
— orr2 : § oCis | dotcyie | @
’ | 1 15
) {ocis | forens | {©
=1 g i 16
» joctb | JorCib | ®
@oc~.4-17
DTT14-17 . ﬂ 7 1 y
1 .
‘_g pct7 | {orevi7 | @
’ BDGS s | 1 . ¥ 3 18
L. A T
sors 7 DC18 _frmeei DTCY18 | - @
P)
S : ' ‘ iocia Iorcyig b 19
] s " - - !
- : 1 I) 20
L foc2g - yo1cyag)| ®
DG18-21 ')
@D'mam \
~""'ﬁlrn:u

INDICATE
RESERVATION FAIL

NUMBERS IN CIRCLES INDICATE NUMBER OF ELEMENTS USED
COUNTING FROM THE DT AND 4 HIGHWAYS.

FiG. 2-4 DATUM ADDER BLOCK CARRY SYSTEM.

B

L74a

DTsa
iMa :

e it s e e &

orsa | LMa LGa Ty LTa
] @ @ 1
; @ % @
] 1 1 1
1 1 o 1

FIG2.5 LIMIT 'CHECK BASIC LOGIC

‘.Lc¢b-¢q - =1 o
NTe7-89 m v

LG 1B -13
@ LT ig—13

BLG2
BLT2

TVLG 14=17 BLG3
LT 14-17 BLT3
)Gt BLC4
LT 18-21 BLT4

INDICATE .~

RESERVATION FAL.

FIG2.6 LIMIT CHECK CARRY SYSTEM

{
r
i
i
L
1
!
i
' S
|
§
]
B
f

QR

L)

b

e e
CHAPTER 2

ADDRESS TRANSLATQR MICROPROGRAM

T TN E S E R UE Ty S U N P N S DR N
The addresses presented to the machine from the object programs will not,in a
multiprogramming mode of operation, be absolute addresses of the core store, but
will be relative to some datum address associated with the particular program. It
is the purpose of the address translator to convert these relative addresses to absolute
addresses in order that the required entry‘in the core store can be located.

The 1906A machine offers a ‘choice of either a Datum and Limit' system or a
"Paging' system. The prmmples of these two systems are descmbed in Volume 1
Chapter 2, but a brief’ summary 1s mcluded below. o -

When the datum and liniit system is in use, the PD (Program Datum) register
will have been loaded with the program's datum by the 172E instruction, when the
program was .entered. This datum must be added to the relative address to give the
absolute value of the address-before the relevant entry in the core store can be located.
In practice the instruction address is only datumised every sixty four words, providing
no branching occurs. All branch addresses and operands are datumised but literals
bypass the sequence. There is also a "reserVation check:'on the audresses to ensure
they fall within the space reserved for the px‘ogram which is terminated by the program's
‘hmlt' . L I (I BN .

. . . :
DR F R I T N S I

In the paging mode of operation, the relative address is considered in three
sections; bits 0-9 as the word, bits 10-15 as the block, and bits 16-21 as the segment,
there being 1K words per block. The core store is divided into pages, also 1K words
long, and when the program is loaded into the core store, each block of program

. occupies a page of core store, these pages not necessarily being consecutive. It is the

task of the paging unit to keep a record of the pages into which the blocks of program
have been loaded,. and to locate these blocks and hence the particular words when they
are required.

When the paging system is in use, the PD register will have been loaded by the
172F instruction with the starting address of the segment table for that particular
program. The required entry of the segment table is given by adding the entry in the
PD register to bits 16-21 of the relative address. This entry will then contain the
starting address of the page table, the entry therein being calculated by adding bits
10-15 of the relative address to the starting address of the page table. The entry will
then give the page starting address, bits 0-9 of the relative address giving the required
word within the page.

2/1

- Using this method, it can be seen that three store cycles would be required to
translate the address, which would take up too much time and so 16 hardware registers
are introduced to overcome this problem. These double length registers, called the
‘current page' registers, hold the block starting address of the program in bits 10-21
of the least significant word, and the corresponding page starting addresses in bits
10-21 of the most significant word. It is therefore only necessary to compare the
required block address with the block addresses held in the C.P.R.'s, the correspond-
ing page address can then be read out from the C.P.R. which gave equivalence with the
block address. This arrangement thus obviates the necessity of several core store
cycles, provided of course the required block address is h€ld in one of the C.P.R.'s
If none of the C.P.R.'s hold the required block address, then a table search must be
initiated involving several store cycles as explained above. When the required page is
found it is loaded into one of the C.1?.R's together with the block address. A second
equivalence check on the address should then prove successful, and the C.P.R. will
be left with the information stored in it to translate any other addresses within the
same block range for that program.

2.2 Paging
2.2.1 General

When a program is running in the machine, only certain addresses need to be

- translated, these being the ones which when the address count is advanced, either cross -

a page boundary i.e. move out of one page of the core store into another, or, are such
- that there is a possibility this may happen. The addresses can be broadly divided into
three groups, (a) Operands; (b) Instruction Addresses and (¢) Branch Addresses, the
action of the address translator being different for each group. There are however,
within the address translator two sequences which are common to all three groups.

These are, the equivalence sequence, and the table search sequence, which are describec

below and will be referred to in the descriptions of the address groups.

-+ 2,2.2 The Equivalence Sequence

As described in Section 2.1 and also in Volume 1 Chapter 2, some of the 16 current
page registers will hold information showing the addresses of the pages of core store
into which particular blocks of program have been loaded. This is done by holding the
starting addresses of the 1K word long page of core store and the starting address of the
1K word long bloc]fc .O,f program which is loaded into it, in the same C.P.R. as shown
in Fig.1l : '

2/2

)

Not ’ Page Permission Not Use In Not Program Block Not
: Use
Used Starting Address Bits Used Bits Bit Used Starting Address Used
23 22]21 10 { 9 716 3l2 ofa2s| 22 | 21 1019 0
CURRENT PAGE REGISTER FIG.1

The 'in-use' bit is set when the C.P.R. is loaded, to indicate it is a valid address, .
for a current program. If it is not set, the page-address can be read out, since it

would refer to a program which has exited through a Group 17 unload C.P.R. order.

Not all the C.P.R.'s will necessarily have been loaded with addresses relevant
to the program which is running, and it may be that not all the blocks of the program
have their starting addresses ina C.P.R. As the program proceeds, a C.P.R. will
be loaded when a new page is entered and when all 16 C.P.R.'s are full, the C.P.R.'s
which were loaded first, excluding any locked C.P.R.'s., will be overwritten with
information of a new page. This means that any C.P.R's which are overwritten coninin
information on the pages least likely to be required again.

It is the function of the Equivalence Sequence to check if any of the C. P.R's hold
the starting address of the block of program, within which the address to be translated
lies. The m.s. part of the C.P.R. which gave equivalence will then hold the starting
address of the page of core store, into which the block of program has been loaded.

The instruction unit microprogram will have gated the address which is to be
translated onto the J highway. Bits 10-21 of this address will give the starting address

of the block within which the address lies. This block address is checked for equivalence

with the block addresses held in the 16 C.P.R.'s. If any one gives equivalence, the
corresponding page address (bits 10-21) is read out and used to replace bits 10-21 of the
relative address; thus, the block address'is replaced by the page address. Bits 0-9
of the relative address are retained unaltered to give the required word within the page
of core store. This new address, bits 0-9 from the relative address and bits 10-21
from the page address form the absolute address which can be used to address the core
store. :

The Address. Translator sequence is initiated by the 51gna1 TREQ. If TRAN is
set, showing a translation is required, .the microprogram will be directed by DLHK
through the Equivalence Sequence. There is.a wait for LKF to ensure that the previous
translation has left the 'next vacant page' count pointing to an unlocked C.P.R.

The signal NJTAF gates bits 0-9 of the relative address from the J highway onto
the T highway (see Diagram 3) and NJTGK gates the block part of the address, bits
10-21 to the equivalence check circuits. ,

IE'NWT is set, indicating that a write address is not about to be gated onto the T
highway, the equivalence check can proceed. If NWT is not set, when NEQT is set,
bit 21 of the relative address will be inhibited, thus preventing equwalence from being

found (O.D.3/H2).

If equivalence is found between bits 10-21 of the relative address and the block
address held in one of the C.P.R.'s then, providing the 'in use' bit of that C.P.R. is
set, the signal EQx will be made; x being the number of the C.P.R. which gave
equivalence. The signal NPTx gates the page address from the C.P.R. which gave
equivalence to the TP highway. It is then gated onto the T highway by the signal NPT,
produced by the microprogram (OD12/G3).

After equivalence has been found, the absolute address, made up from bits 0—.94
of the original relative address and bits 10-21 from the page address of the C.P.R.
which gave equivalence is on the T highway. If equivalence was found, the signal EQ
will be set. The action of the Address Translator from this point on is dependent
upon the type of address to be translated.

If equivalence was not found, then the Table Search Sequence will be entered o .
load the required page address into a C.P.R. The Equivalence Sequence is then re-
entered with TRRQ and if equivalence is still not found, the not equivalence sequence
is entered by NEQ (see Chapter 18). '

2;2,3 Table Search Sequence

1f the equivalence check does not give equivalence from any of the C.P.R.'s., it
is necessary for one of the C.P.R.'s to be loaded with new information. The C.P.R.
at which the'next vacant page' count is pointing is used, for this will.be unloaded and
the information in it is the least likely to be required (see Vol.1l Chapter 2). Before
it can be re~loaded, however, a check is made to determine whether the 'in use' bit is
set. If the 'in use' bit is set, the 'use table' entry for that block must be updated with
the 'use bits' in the C.P.R. before they are destroyed.

If the C.P.R. to which the 'next vacant page' counter is pointing has the 'in use'
bit set, the signal ANVPx and PB x 23 (x being the C.P.R. number) will give the signal
UVP (0.D. 3/G4).

‘The table search sequence can be divided into four routines, each being described
below. o

2/4

O

Unload the C.P.R. (S.C.108)

This routine addresses the required one of 16 half word 'use table' entries
and reads the contents into the PW register. The contents ave taen updated
with the 'use bits' held in the C.P.R. and then written back to the same
address in the core store. The address of the'use' table is formed in two
sections. Bits 11-21 being a fixed number and bits 0-11 being the page
address held in the relevant C.P.R. (see Vol.1l Chapter 2).

After the equivalence check has failed to find equivalence, and since the

‘Table Search Sequence has not taken place, _E_)_Q and SRCH will be set.

(OD 12/33).

After setting SRCH, assuming UVP is set, the signals NPV and NUT will

be made. NPV & ANVPx will make the signal NPTx (OD 3/H3) which will
gate the page address and the use bits of the C.P.R. which is about to be
unloaded onto the TP highway. The signal NUT gates the page address from
TP 11-21 to T 0-10 and the fixed number from UT 11-21 to T 11-21 to form
the 'use table' entry address.

Note: Since the 'use' table entry is only half a word long, TP10 the l.s.

bit of the C.P.R. address, is not required to form the 'use table' address

It is however, used to select the appropriate half of the word which has
been addressed, to give the required entry for the page.

The signal ZUR produces the signals NTAAF and NTAGZ which gate the
use table' entry address from the 'T* highway into the AA register. ZUR
also makes the signals D:ROP and D:NEXT in readiness for the 'read’
followed by 'write' cycles. (The signal D:NEXT ensures successive core
store cycles for read and write sequences). . The PREQ signal is sent to the
distributor to initiate the reading.of the 'use' table entry from store. NAAH
gates the 'use' table entry address onto the AH highway.

If the page address is odd, TP10 will be set, the signal NUWAM being made.
If the page address is even, TP10 will not be set so NUWNZ (OD 12/GT7) will
be made. These signals will direct the 'use' bits from the PR highway to
cither PW0-2 or. PW12-14 which can then be loaded to either the l.s. or
m.s. part.of the luse! table address.. The original contents of the 'use'
table entry are modified by the'use' bits of the C.P.R., thus updating the
(half-word) use table entry associated with the block of program. Any of
the bits already set in the 'use! table will be)left,unchanged, but any bits
unset may now be set if they have been set in the C. P.R. since the 'use’
table was.last updated.. . The sequence then generates NTPW (OD12/G7)
which strobes the updated use table entry to the PW register.

Nkt

2/5

2/6

b)

The bistable ZUW is set and the strobe ZZUR produced. Z7ZUR starts
the sequence which writes the updated 'use’ table back to its original core
store location, by re-entering the microprogram sequence at (OD 12/K5).
The ZUW bistable generates D:WOP and D:PAG which gives the signal
DPW in readiness for the write cycle, A PREQ signal is sent to the
distributor, NAAH gating the table address from the AA register to the
AH highway. DPW will then gate the contents of the PW register to the
core store. ‘ o

The inicroprogram then continues by producing NRU (OD 12/H7), which is
gated with ANVPx to give NRUX. This signal resets the 'in use' bit PB23 .
of the C.P.R. being unloaded. NRU is also gated with ANVPx to reset the

mise! bits. The microprogram then sets the signal ZZUW.

Read from segment table (S.C.109)

The address of the entry in the segment table which contains the page table
start address is formed in the AA register by adding the segment part of
the relative address (bits 16.21) to the segment table base address in the
PD register, (see Diagram 5).

The 'unload C.P.R. routine' will have produced ZZUW which will cause
re-entry to the microprogram sequence at (OD 12/J4). Assuming the
segment is not out of range SOOR being set, (see OD 3/B6) the bistables
7ZSR and NDT will be set.

Bits 16-21 of the relative address on the J highway will be added to bits

0-5 of the segment table starting address in the PD register, the output
being PDS0-5. The carry bits PDCY are used to detect whether the segment
is out of range.

The signal NDT gates the complete segment table entry address (PDS0-5
and PD6-21) onto the T highway. ZSR will make the signal D:ROP (OD/ . K3)
to prepare the distributor for reading out the page table start address.

The signals NTAAF and NTAGZ made by ZSR and ZRSR (OD 12/K5), will
gate the address of the segment table entry into the AA register. This
address will then be gafed to the address highway by NAAH, the PREQ
signal initiating the 'read out' onto the RE highway. When the RDST signal
is detected, indicating the information has been read out, the signal NST
(OD 12/K7) gates it onto the T highway. Itis then gated to the AA register -
by NTAAF and NTAGZ (OD 12/J37), thus the AA register has been loaded
with the page table start address. The microprogram then generates ZZSR
assuming it is not a replacement address.

()

If the address read out is a replacement address (bits 22 and 23 not being
set), then this address gives the locatfion of the page table start address.
Another store cycle is therefore required.

- When the address has been read into the AA register, the signal PREP

will be made (decode of bits 22 & 23) thus directing the microprogram to
set ZRSR and generate ZZRS. (OD 12/J8). The 'read from page table'
sequence is re-entered by ZZRS (OD12/J5) the address of the page table
start address being in AA from the previous read cycle. The micropro-
gram then initiates the read cycle as before, loading the required address
into AA with NTAAF and NTAGZ (OD 12/J7). This address, from the
second read cycle, is then interrogated to determine if it also is a'replace-
ment address. Three conditions can then arise.

1) The address in AA is not a replacement address. In this case
PREP, the second read cycle will end by generating the signal
7Z7ZSR in readiness for the 'read from page table sequence’.

2) The address in AA is a replacement address and MULREP .
made. In this case ZZRS will again be made thus initiating a
further read cycle using the address just loaded into AA. This
cycle could be repeated until condition (1) above was attained.

3) The address in AA is a replacement address and MULREP is
made. Since multiple replacements are not allowed, a failure
condition arises, REPFLS being generated. This signal will
cause entry to the not-equivalence sequence when the main
microprogram is allowed to proceed (i.e. when TA is made),
as TEQ will be set. -

Read from Page Table (S.C.110)

The page table entry address is formed by using bits 10-15 of the relative
address (the block part) as the 1.s. five bits of the page address. Bits
6-21 of the page address being the page table start address stored in the
AA register. B

77SR re-enters the microprogram at OD3/H4 and if POOR and PTAB
(Page Table ABsent) are set indicating that the address of the page table
is not out of range and that the page table is in core store, the signals
ZPR and NJPT are made. NJPT gates bits 10-15 of the relative address
from the J highway to bits 0-5 of the T highway. .

2/7

ZPR will make the distributor signal D:ROP (OD 19/M5) and the signal
NTAAT which will gate bits 0-5 from the T highway to the AA register,
(see Diagram 6). The AA register will then contain the page table entry
address and the permission bits. NAAH will gate the address onto the
address highway, the PREQ signal initiating the read out from the core
store,

When the RDST signal shows the page address has been read out onto the
RE hlghway,l NST (OD12/ K7) gates it onto the T highway. The signals
NTAAF and NTAGZ (OD 12/KT7) gate it into the AA register, the micropro-
gram then generating ZZPR provided it is not a replacement address. If -
it is a replacement address, a sequence 31m11ar to that for 'read from
segment table' is followed.

d) = Load CPR (S.C. 111)

Having now loaded AA with the page address into which the block of program
has been loaded, this information along with the block address must now
be written to the CPR.

In the following description it is assumed that a multiprocessor system is
not being used, hence PTIME and ALLOW will be made.

The sequence is entered by ZZPR making NTPP and setting NJTLZ (OD 12/
N5). » ‘

NTPP gates the page address and the permission bits from AA7-21 to the
C.P.R. bits PP7-21 (OD 3/K1). NJTLZ gates the relative address from

the J highway, bits 10-21 onto the T highway, (see Diagram 7). The
microprogram then makes the signal NTAGZ which gates the block address
from the T highway to bits 10-21 of the AA register, followed by NTPB which
gates it from the AA register to the C.P.R. bits PB10-21 and sets the 'in
use' bit (OD 3/G2).

The signal TRRQ will cause the equivalence sequence to be re-entered
(OD 12/G2) and unless a hardware fault occurs, equivalence should be
found.

2.2.4 Instruction Addresses (S.C.105);
When an instruction address is gated onto the J highway from the AC register,

(OD 2/J37) as it is a relative address it must be made absolute in-the address translator,
There are two different cases to be congidered.

A

1) when the address does not lie within the same page as the previous
instruction address, or if there is a possibility that this may happen (case
la). '

2) when the address does lie within the same page as the last instruction
address.

In the first case considered above, a TREQ 'signa'l is required to initiate the
translation this being produced from the instruction unit microprogram (OD 11/J6)
when the signal NEWP is present. This signal will be produced by any one of three
conditions.

Since a page is 1K words long, when the instruction address reaches a multiple
of 1024 this is an indication that the instruction address has crossed a page boundary.
The signal HCY 10 is produced from the carry bits in the control adder which in turn
produces NEWP (OD 4.MS5).

An instruction which was part way through the instruction unit may have to be
abandoned, because the preceding instruction, which may have written to itg store
location, must be allowed to complete its action before the following instructici can
be processed. WTOC is produced (OD 10/K4) and when the instruction is called again
BKGI will be produced which will set NEWP (OD 11/J8). ‘

When an HC 'carry on' type instruction has held up the sequence and the abandoned
instruction is recalled, the AY register may not hold the correct page address and so
a translation is required. The signal HCCO is produced which sets NEWP. (OD 10/F8).

. When a program is entered by the 172E instruction the address from which it is
required to start, which will have been loaded into the P register, must be {ranslated.
The end of the 172E instruction also therefore produces a TREQ signal. (OD 17, J,X, L,
M.). '

The TREQ signal will initiate the address translation (OD 12/El) by entering the
equuivalence sequence as described in section 2.2.2. Assuming equivalence is found -
the translated address will be on the T highway, and provided PERMIT is set showing
the type of store access on this page is permitted (OD 12/F3), the sequence will be
directed by RQNP to produce NTY. If PERMIT is not set, TNOP will be produced and
the non-equivalence routine initiated (OD 8/C2). This signal NTY gates bits 6-21 from
the T highway to the AY register, (only bits 10-21 are required for the page address, -
bits 6-9 being redundant in this case), thus the page address is now in the AY register
and will remain there until a new page is entered.

2/9

P tRe

After a wait until the address highway is free, (AHF), the staticiser NYAH is
set. The signal INREQ can alternatively enter the sequence at this point (OD12/B1)
as explained below. NYAH gates the page part of the address (pits 10-21) from the
AY register and the 'word' part of the address (bits 0-9) from the AC register, where
the relative address will still be held, to form the absolute address on the address
highway. : '

The PREQ signal will then initiate the distributor to read out the instruction.
The signal KIN will cause the instruction pair to be loaded to the E and O registers
(or if it is a single instruction to the O register only) when RDST is received, and
after a delay of 50ns the signal RHF is set.

If EQ and PERMIT are present, the microprogram is also directed down another
‘path (OD 12/G3) to initiate the setting of the use bits and CPR locking sequences.

If 2 multioperand transfer order has been obeyed, up to four CPRs may have been
locked, it is therefore desirable that these be unlocked after the next instruction
address translation is made. All CPRs except CPRO are therefore unlocked after an
instruction address translation. The CPR which now contains the page address for
the new instruction block is lockefi, uhtil a page boundary is crossed. This is
necessary because of software considerations, although the hardware would be unaffec-
ted if it were not locked.

The RQNP signal directs the microprogram to set NTUN which unlocks all
C.P.R.'s except C.P.R.O. RQI will then cause NTOU to be set (OD 12/G5) which
. will set the 'obeyed!' bit in the CPR which gave equivalence (PPO2). NTLK will lock
the CPR (OD3/EL) which will produce PLKx which when gated with ANVPx (OD3/F4)
makes EQVP if the next vacant page counter is pointing to the C.P.R. which gave
equivalence. The signal NTVP will then be made, stepping on the next vacant page
counter to an unlocked C.P.R. If the C.P.R. which gave equivalence was not the one
+that was last loaded, the next vacant page counter will not be pointing to it, therefore
EQVP will not be made as it is not necessary to step on the counter. In either case the
C.P.R. which gave equivalence will be locked.

In the second case considered, as the address lies within the same page as the
previous address, the page part (bits 10-21) will already be held in the AY register.
It is therefore not necessary to do a full translation.

The instruction unit will not set NEWP, hence the signal INREQ will be produced
(OD11/K6). This will cause entry to the address translator at (OD 12/B1) NYAH will
then gate the page part of the address from the AY register and the ‘word' part of the
address from the AC register to form the absolute instruction address on the address
highway. The sequence continues from this point as for the normal translation describ-
ed earlier. ‘

2/10

P
I

2.2.5 Operand Address

All operand addresses must be translated, but the store access for read
operands is treated separately from write operands.

a)

Read operands (S.C.1086)

The TREQ signal will causé entry to the equivalence routine and assuming

- equivalence is found the absolute operand address will be loaded onto the

T highway, the signal EQ being set. If the PERMIT signal is set showing
it is a page which can be read frox, the sequence divides into two brancnes.

The main path is directed by the signal EQCK and RQNP to await for the
AA register to be free (AF) and the signal WPROC to indicate a transfer
from the AW register to the AA register is not underway.

The signals NTAAF and NTAGZ gate the operand address from the T
highway for the AA register, the signal NTA generating the control signal
A:ROP. . NTAR is sent to the microprogram to indicate the operand
address is in the AA register, and the AA register and the address high-
way are marked busy by AF and AHF, The sequence is then held awaiting
the signal APROC from the micro-program which requested the translai-
ion (CLA is produced from the 152,153 and 154 orders, resetting APROC
if the read cycle is cancelled: see Chapter 16). '

When the APROC signal is present, the A:ROP signal directs the routine

to set PREQ and NAAH to load the operand address onto the address
highway and initiate the distributor 'read out' sequence. The address
accepted signal is passed onto the CPU and after a wait for the read
highway to come free, NTRH is sent to the microprogram which sent the
TREQ signal. The signal KOP is then sent to the microprogram and if it
is an 023 instruction, the signal KIN is also set in order that the micro-
program can distinguish between an operand and an instruction. The RDST
signal indicates the operand has been read out onto the RE highway.

The other branch of the microprogram sequence, is d*rected by RQNI

(OD 19/C3) to set NTRU which sets the 'read' use bit, PP1, in the CPR
which gave equivalence (OD3/M1). The sequence continues, generating
NTLK which locks the CPR, and produces PLKx (OD3/F3) which when
gated with ANVPx (OD3/F4) makes EQVP if the N.V.P. pointer is pointing
to the C.P.R. which gave equivalence. After a delay of 25ns, NTUK
unlocks the CPR which gives EQVP. After a delay of 70ns if EQVP is
present, the signal NTVP will step on the next vacant page counter to point
to the next C.P.R., hence making this C.P.R. the least likely to be re-
loaded. If the pointer is still pointing at a locked CPR it will be stepped
on again;as EQVP will be set, until an unlocked CPR is found.

2/11

o

)

'AW reglster

If the N.V.P. counter is not pointing to the CPR which gave equivalence
there is no necegsity to step it on hence EQVP will not be made.

Write Operands (S.C.107)
The operand address must be translated, loaded to the AW register and

from there copied to the AA register where it can be gated to the address
highway in readiness for the write cycle. The address translator however,

~ also copies the translated address to the AA register before the AW

register is loaded, this copy being redundant. The AA register is then
set free (signal AF) so that it can be used by another sequence if required.
This action is referred to as a 'cxummy operand' sequence which utilises
the logic available.

The first part of the sequehce is similar to that of a read operand address.
The TREQ signal causes an equivalence check to be made (see Section
2.2.2) and assuming equivalence is found the translated address is gated
from the J highway to the T highway by NJTAF and NJTGK (OD3, J,K, M-5)
the signal EQ being set. The sequence shifts into two paths at this poluc.

The other path selected RQNI sends the signal NTWU which sets the
'written to' use bit (PP0) in the C.P.R. which gave equivalence (OD3/M2).
The CPR is locked by NTCK (OD3/D4) being unlocked 25ns later. The

next vacant page counter is then stepped on by NTVP to point at an unlocked
C.P.R. thus ensuring that the C.P.R. which gave equivalence is the least
likely to be re-loaded. The details of this logic are described in the 'read
operand' degcription above, section 2.2.5a.

The main path is directed by EQCK and RQNP to the waiting gate AF and
APROC (OD12/E4). The signals NTAAF and NTAGZ gate the operand

address to the AA register., After a 25ns delay RQJ will cause TF to be
set (OD 12/D5). This signal which is sent will allow the awaiting WREQ

(OD4/L5) to be sent back to the address translator (OD12/A1) to complete
. the sequence.

Meanwhile the main branch of the sequence having waited for APROC (D3)
is directed by A:ROP and A:WOP to set AF after 25ns, thus the address

< in the-AA register.canbe overwritten as it serves no useful purpose The
~translated address however is stili.on the T hlo"hway SRS

r T .5, el.’\",

| ‘The WREQ 31gnal (F4) after the walt for WF to S1gmfy that the AW register

is free, causes NTW,, . which O‘ates the address from the T hlghway to the
OD12/A1) e T TR favut o

Provided AF is set, showing the AA register to be free, and a WPROC
signal has been sent by the sequencer, NWT transfers the address in the
AW register to the T highway. The sigrals NTAAF and NTAGZ then gate
the address from the T highway to the AA register. When the address
highway is free the signal NAAH gates the address onto the address high-
way and sends a PREQ signal to the distributor. When the 'write' cycle
is under-way, the distributor sends the sigual AA which is thén directed
to the instruction unit microprogram. (CLRM is produced from the 150,
151 sequences, resetting WPROC if the write cycle is cancelled see
Chapter 16). .

Similarly if not equivalence occurs, giving NEQP during a floating point
operation, the numbers being stored odd/even, CLW will be produced
(OD12/A2). This will effect the address translator sequence the same way
as CLRM (OD12/A2) (See Chapter 16).

2.2.6 Branch Instruction (S.C.104)

Note: See also S.C. 103/1,2,3 for first pass of replaced branch instructions ot
which this sequence is the second pass.

In the case of branch instruction, the branch address must be made absolute, it
is then loaded into the AA register, a copy of the page address kept in the AY register
for the next group of instruction. For a conditional jump instruction, the absolute
address is loaded into the AA register before the decision of whethe - it is successful
or not is made. If it is a successful jump, PASS is set, but if not, PASS is set, the

store access being abandoned.

The TREQ signal from the sequencer causes entry to the equivalence check
routine, when LKF is set from the previous translation (OD12/F2). Assuming’ equival~
ence is found, the translated address will be'gated to the T highway by NPT, NJTAF
(OD12/G3) and after a 10ns delay, TA signal is sent (OD12/C4). When the AA register
is free and a write address is not about to be loaded to AA, NTAAF and NTAGZ gate
the absolute address on the T highway into AA register and the signal AF generated to
make the AA register not free (OD12/E5). The sequence is now awaiting the APROC
signal to signify a store access can be made: -

The other path of the microprogram which branched at OD12/F3 now takes the
path selected by RQJ signal (OD12/G4) again having to wait for APROC.

It is at this point that the result of the test as to whether the jump is successful
or not is made. The two cases, PASS and PASS'are now considered separately.

2/13

If the jump instruction is not successiful, PASS being set, the store access
translation is not required. The signals A:RQJ and PASS will direct the sequence down -
the dummy operand path (OD 12/D6), setting the address highway free and the AA -

register free (AHF and ATF). The translator is also set free (OD 12/D6). The other
path of the sequence is directed by PASS to set LKF. ’

If the jump instruction is successful, PASS being set, the store access to continue.
The signals A:RQJ, PASS, TEQ & A: A:ROP will set NTY (OD 3/D6) which will gate bits
(6-21) from the T highway to the AY register, thus leaving a copy of the page address
in the AY register for the following instructions. The signals A:RQJ, PASS & TEQ
will direct the sequence to make the PREQ signal to initiate a read out of the instruct-
ion, NAAH gating the address from the AA register to the address highway. When the
distributor sends the address accepted signal AA, this is sent to the CPU. '

The sequence will then be directed by ATROP to set DTAD (OD 12/C7), which
loads the branch address to the Maintenance Aid Buffer, AD. The signal NTRH (D38)
1; sent to the instruction unit microprogram to indicate that an mstruc’cmn pair will be

he next information on the read highways.

The signal KIN to the instruction unit microprogram will load the instruction
pair to the E and O registers (or ifitisa single instruction to the O register only) via
the distributor. The signal RDST will be sent to the address translator, which in turn
will send it to the C.P.U. indicating the instruction is about to be read out. '

The other path of the sequence which was waiting for APROC will be directed by
PASS to follow the procedure as for an instruction address. NTUN will unlock all the
CPR's except C.P.R.0; NTOU will set the obeyed bit in the C. P.R. which gave equival-
ence, NTLK then locking the C.P.R. if this CPR has the next vacant page counter
pointing to it, the pointer must be moved on fo the next unlocked CPR. EQVP will
produce NTVP which will step the counter on to an unlocked CPR.

2.2.7 Replaced Branch Instructions (S.C.103)

With a replaced branch instruction, n is the address of the core store location
which contains the branch address. In order to read out the required instruction, two
passes through the address translator are required, the first to translate the address
of the branch address and the second to translate the branch address.

On entry to the instruction unit at signal TREQ (OD 12/E1), the relative address

has been gated from the P highway to the J highway and an eqmvalence check is carried
out (Section 2.2.2).

2/14

N

g

S

Assuming cquivalence isfound, the translated absolute address is gated to the T high-
way by NPT, NJTAF (OD3/D2). When the AA register is free and a write address is
not about to be loaded from AW to AA, the signals NTAAF and NTAGZ gate the
translated address to the AA register, AF then being generated to mark the AA register
not free. The sequence is then awaiting the APROC signal to signify a store access

can be made. ’

The other path of the microprogram which branched at D3 now takes the path
selected by the RQJ signal (E3). On receiving this signal, assuming it is a successful
branch, NTUN unlocks all the CPR's except CPRO and as RQRD is present, NTRU
marks the 'READ' use bit of the CPR which gave equivalence andalthough NTLK locks
this CPR after a delay of 25ns, it is unlocked by the signal NTUK, as this is not the
final required page address.

If the next vacant page counter is peinting to the CPR which gave equivalence,
the PLKx signal gated with ANVPx (0OD2.J4) will produce EQVP which when gated with
NLKK delayed by 70ns will produce NTVP to step on the next vacant page counter. The -
CPR which gave equivalence is then the last to be reloaded.

If the next vacant page counter is not pointing to the CPR which gave equivalence
the counter will not be stepped on as ANVPx will not apply to the same CPR as the PLK
signal (OD3/F3).

After the wait for the APROC signal (OD12/D5), the decision will have been made
whether or not the branch is successful and if it is so, PASS will be set. If it is not
set, the branch test being unsuccessful, the translation is abandoned, the microprogram
being directed by A:RQJ and PASS (OD12/D6) to set the address highway and the AA
register free.

In the case of a successful branch instruction, the signals A:RQJ, PASS and
TEQ direct the microprogram to send the PREQ signal to the distributor to initiate

‘the 'read’ cycle. NAAH gates the address.fromthe AA register to the address highway

The signal A:ROP directs the sequence set NAAH and AHF (OD12/E7).

"The signals KOP and KIN are sent to the instruction unit (OD14/D1) which will
initiate the microprogrdm to gate the branch address into the fixed point buffer. This
address is then pre-modified if necessary and loaded into the P register, from which
it is gated onto the T highway. Another TREQ signal is made at-this point to cause
entry to the address translator for the second pass. The second pass is exactly the
same as for a normal branch instruction. PASS always being set (see Section 2.2.6)
When the branch address has been translated, the required instruction pair is loaded
to the E and O registers, (or if it is a single instruction, to the O register only) a
record of the page address being left in the AY register.

W T 2/15

2.3 Translator By-pass (S.C.101)

The by-pass directs the translator microprogram to load the number from the
J highway to the T highway without translating it (OD 12/E2). It is used when the
information on the J highway is a 'Literal' or in some cases as listed in Section 2.3.2
below, when it is an address less than 8 indicating an X register access is required.

2.3.1 Literals

When the TREQ signal is made, the signal ABS will be present (OD 12/F2) which
will direct the sequence down the by-pass. The signals NJTAF, NJTGK and NJTLZ
gate the contents of the J highway (bits 0-21) to the T highway. If the AA register is
free and a write address is not about to be loaded into it (AF and WPROC) the signals
NTAATF and NTAGZ load the literal to the AA register. After the APROC signal is
received, the sequence is directed down the dummy operand path by A:WOP & A:ROP
& A'INKP, the A reg1ster being set free after a delay of 25ns providing the F regxster
is free.

2.3.2 X Register Access

The action of the translator when the address to be translated is less than 8 is
dependent upon the origin of the address. The sequence of the translator can be
divided into; a) via the normal translation sequence, b) via the by-pass.

The path via the normal translation sequence is used for:

1) HC type instructions excluding the 116, 126 and 127,

2) During the interrupt sequences when the access to words 0-~7 of the program
is required. :

3) Branch and replaced b‘rahch' instructions.
4) Instruction addresses excluding the 023 instruction.

Iﬁ all these cases the X register access is made via the distributor, the path
through the address translator being the same as for addresses >7.

The path via the by-pass is used for:

1) Reading an operand from an X register; after the translator by—pass the
sequence is the same as for an address >7 with the exception of the fixed
point operand. In this case the signal A:XOP will be set, and gated with
A ROP (OD 12/D6) hence the routine will be directed down the dummy
operand path after the APROC signal is received. Access to the X registers
is via the micro-program and not the distributor for the fixed point operand.

2/16

AN

&

2) Writing to an X register: after the by-pass, the sequence is the same as
for writing to an address greater than 7, access to the X register being
made via the distributor.

3) . During the interrupt sequences when access to the hardware X registers
is required, the by-pass is used, the remainder of the sequence being as
for a normal 'read operand'. Access to the register is made via the
distributpr, '

4) The 116, 126 and 127 multi-operand transfer instructions. If the addresses
are less than 8, when the first and last addresses of the origin and
destination are checked, after the by-pass, the signal EQCK directs the
sequence to end by setting translator free TF (OD 12/D4).

For the subsequent read and write accesses, the by-pass is used, but after this
the sequence continues as for read and write routines with addresses >7, access to
the X registers being made via the distributor.

When the TREQ signal is received the signal HDX, when present, will direcs
the sequence through the by-pass. As for the 'literals’, the address will be gated
from the J highway to the T highway without translating it. From there on, the °
sequence will depend upon the origin of the address on the J highway as described
above.

2.4 Datum and Limit

In order to make the relative address in the program into an absolute address,
the datum for the program must be added. A check is also made that the program
size is such that it will be within the set limit. The program is considered in blocks
of 64 words, datumising only beirig necessary when a new block is entered, or when

- there is a possibility that this may happen. Bits 6-21 of the address give the block

address, bits 0-5 indicating the word within the block. 1t is therefore only necessary
to datumise the block part of the address, bits 6-21.

The conditions which give rige to a datu,misihg sequence being required, are the
same as those which require an equivalence check in the paging system, with the excep-
tion of the instruction address crossing a page boundary. In this case, a datumising
sequence is required every 64 words. instead of every 1K words the signal HCY6
producing the signal NEWP (OD 11/J8) when the address in the AC register reaches a
multiple of 64, The machine is switched to the datum and limit mode by a manually
operated switch which sets the signal DLHK.

2/17

When a program is running in the datum and limit mode, the datum will have
been loaded to DT6~21 (OD 3/C3) by the 172E instruction. Bits 6-21 of the relative
address are added to the datum in the datum adder (OD 3/C2) to give the datumised
address DT6-21. The TREQ signal will direct the micro-program to be routed by
DLHK to set NDDT and NJTAF. These signals gate the datumised address onto the T
highway, bit 6-21 from the datum adder, and bits 0-5 from the J highway. From this
point on, the sequence proceeds in the same way as for the paging mode of operation,
as described in Sections 2.2.4 to 2.2.7.

2/18

g

PREFACE

This memorandum describes a programming system which has
been simulated on the ICL 1900 computer, and realized on the
experimental Basic Machine at Stevenage., It is the first system to
meke use of a comprehensive set of data tags, recognised by hardware.
The present system design was initiated in 1965, and has been the
basis of experimental programmes which have lead to alterations in
hardware and system characteristics. As a general rule, however,
changes which would invalidate existing programs, or whose effect is
predictable, have not been implemented. The existing system is
described in sufficient detail in the following pages to allow
complete programs to be prepared for running and debugging.
Supplementary information will be found in the IBS Operating Manual.

The two previous editions of BLMM 18 are outdated by this
memorandum. The work of compiling and editing has been carried out
by Miss D.I.8. Meinhart, with contributions from A.L.Gs Flanagan,
J«K. Tliffe, A.W, Shilling, Mrs. J. Travis, and J.J.L. Williams, We
would like to acknowledge the cooperation of users in S,A.P.0. and
Imperial College in pointing out defects, and tolerating the
ambiguities of earlier efforts.

Stevenage, Herts.
51 August 1969.

1. Machine and Data Structures

A Basic Machine consists of an information store and a number
of processors, The store can be subdivided into areas of program, base
and file storage, which means in practice that the three are addressed
in different ways and deliver different units of information on being
accessed. A processor is either a central processing unit (gpg), which
controls the transfer of information between program and register
storage, or a (peripheral) device, which controls transfers between
program and file storage.

Information transfers are usually accompanied by a change in
the pattern of stored information. In the case of a device, this change
must be logically simple, e.g.ya parity bit calculation or conversion of
a bit pattern to printed character form, but in a cpu more elaborate
operations can be carried out, including a range of arithmetic and
logical functions of binary quantities, taken either from base or from
program storage. A cpu is controlled by a sequence of instructions
taken from the program store in the form of binary basic code (EEQ)
commands, according to rules similar to those for any conventional
single sequence calculator, The devices are controlled by device
commands issued by cpu's as a result of obeying certain BBC instructions.

The broad picture of the basic system is completed by the

presence of a number of users, who have the ability to communicate with
parts of file storage, and to control cpu activity by giving commands
i in the form of Basic Language instructions which are obeyed directly.
G The whole system, neglecting the multiplicity of persons and physical
components, can therefore be sketched as follows:
oy file] 1 base
| ; —alstorage g program register
storage ! storage
{ - TN
1 : ! vt
"I
. ; . i BBC commands:e;
. : ?F_ggggce commands ——
' /,w_:z_._\\ X
R et B| CIs =¥ 4 CIs - - >
files €Vices JBasic Language commands
lj It can be seen that Basic Language commands in the form of CIS

(command input stream) files control the information paths between base and
program storage, and indirectly control the paths between program and file
storage. Binary basic code can only be generated by putting BL commands
into a file and having them translated into binary form, so that all system
activity stems from sequences of BL commands. Of course, the origin of a
command sequence may be in the text of a program written in another language
which has been through several stages of translation, but all commands must ’
eventually enter the system in the format of Basic Language, and the system
can only be fully exploited by issuing commends directly in BL.

It does not follow, however, that every capability of the system
is available to the users. It is normally the case that the utility of
an installation or group of installations is decreased if each user is
allowed to specify exactly where his information should be held in physical
storage, or exactly which processors should obey his commends, or exactly
when a particular operation should be performed. Oneof the requirements
of an input language is that it should insulate the users as much as
possible from changes in the physical components of the system, The main
features of Basic Language which make such concealment possible are the
symbolic basis of the addressing system, which insulates the user from
the properties of different storage devices, and the definition of a
process as the act of obeying a sequence of BL commands, which enables
not only the configuration of devices and cpu's, but also the exact
pattern of binary basic code itself, to be concealed from users. The
same principle has been applied wherever possible in the system design,
and by a combination of linguistic and hardware devices a high degree of
independence of machine coding has been achieved.

Y The “base! referred to above includes a number of hardware
"registers'". The register store itself stands squarely on the boundary
between exposed and concealed parts of the system. To a user who is
primarily interested in file manipulation, the existence of program and
register storage is almost irrelevant, except when he wants to describe

g new procedures. However, with a suitably elaborated language all procedures

Ly can be descrived by operations on the program store, with no explicit

reference to registers, and consequently the range of application of

o the language is widened. In the Basic Machine system it is intended to

provide two versions of the input language. In Pure Basic Language the

structure of the register store is entirely concealed from the user; in

Applied Basic Language a set of registers is made explicit, and the

instruction code is oriented towards using the registers in the most

effective way. A single compiling program is sufficient to tramslate
programs written in either version of BL into binary basic code.

The purpose of the present document is to describe the grammar
and use of Applied Basic Language. In Section 2 the main components of
the language are introduced, constants are defined, and the method of
table searching which leads to the value of variables is given.

The next three sections deal with the three classes of instructions, i.e:

machine instructions, which are directly obeyed by the cpuj

system instructions, which are obeyed by calling subroutines
permanently held in program storage;

and assembly directives, which are used to control the process
of translating BL commands into BBC.

Section 7 contains an example of a program, illustrating some of
the material in Section 2.5. The initial file handling system is described
in Section 8. The final Section consists of various tables to which
reference is made in the text.

1a1 Storage

The Basic Machine store consists of a core (16K words of
32 bits), a collection of magnetic and paper tapes (some of which are
recorded in ICL 1900-compatible mode), and a number of electromagnetic
delay line stores. The last named meet the requirement for register
storage in Applied Basic Language; program storage occupies most of the
core and one or more magnetic tapes; the file store resides on the
remaining magnetic tapes and paper tapes, to which must be added line
printer output and teleprinter input and output, since the definition of
the system embraces all material exchanged with users. The registers are
built to meet the specification given below; the program store is
considerably different from the core and tape onto which it is mapped, s0
that special hardware has to be used to maintain the conceptual store
structure; the logical organisation of the file store is also markedly
different from its physical realization, but since access to the file is
handled by interpretive routines the techniques used on the Basic Machine
are conventional,

Te1e1 Register Storage

Register storage consists of a number of registers designated
"Xov, "X1",,,, etces* Associated with each register is a variable tag
describing the register content, the main tag codes being (in hexadecimal
form, see Section 2.1) 3

tag O Binary data
1 Null register
#A Address

The tag value is set when the register is loaded. It is interrogated by
hardware in the course of function executione

Binary data (tag 0) consist of 32-bit words. Throughout the
machine description, bits are numbered from zero at the least significant,
and a subfield extending from position p to p+q is written

31 0
X 5 tag O

as "oit p(q)". The register bits are therefore numbered from zero to 31.
The tag does not form part of the directly accessible information. A
conventional set of functions of binary data is available, arithmetic
functions treating the register as an integer in two's complement
representation, with the sign in bit 31.

A null register (tag 1) is strictly meaningless as an operand,
and causes an error to be signalled by most machine functions. The tag
can be set to 1 and tested by program, and may be used to lead into
special system or user-defined actions,

* In the experimental machine there are eight registers.

L

An address (tag A) points directly to an information unit in
core store which is the first member of a sequence of similar elements.
The address contains a coded description (D) of the elements and a
1limit (L) indicating how many more there are, as well as the location
number (C) of the first one:

X pl . {c tag A

An address cannot be manipulated as binary data by a user, so it is
unnecessary to specify the exact format of the register., C is a location
number sufficient to cover the actual core store; L is defined to be a
15-bit- field, so that the moximum addressable sequence has 32,768 elements;
D describes both the arithmetic category of the elements and the way the
sequence is represented in core, as discussed in subsection 1.7.2.7,

Note that if L=0, the sequence degenerates into a single element, and

the address is said to be gingular,

The above are the threec main categories of register information,
each register being able to hold information from any category. Further
refinements of data descriptions are made in the definition of machine
functions (Section 3).

1142 Program Storage

The program store is conceived as a collection of ordered, finite
sets of informetion, the length of each set being chosen by the programmer
to suit the information it contains. Associated with cach set is a unique
descriptive word known as a codeword, which is formed and stored by a
system routine as the result of a store request made by a programmer,
Besides giving the length of the set, the codeword indicates its physical
starting position and the sort of element it contains.

In general the elements of a set are of the same sort,
characterised by z numerical coding of type (integer, instruction,
codeword, etc.) and size (8,16,32 or 6k bits)e. It is also possible to
describe sets of mixed elements, and in Applied Basic Language one such
set, known as the register dump, is associated with each active process
in the machine.

By grouping the codewords themselves into sets, and arranging
that their codewords appear in other sets, it is readily secn that the
program store can assume the structure of a '"tree'", provided certain
conventions are adopted to prevent circularity: such conventions are
observed by the store control routines. The program store is thus
presented as a hierarchy of information, with codeword sets at the inter-
mediate levels, and instructions ok data occurring at the "lowest" level
of the hierarchy. The "tap" level consists of a set of codewords in fixed
locations, describing both permanent and variable system information. '
One level down from this is a set of codewords describing the process bases,
one base being associated with each active process in the machine. The user
is given free access only to his own base (by using global names, see p. 17)
and to the lower level information which it describes. The machine and
system functions do not allow one to progress "up" the hierarchy and so
from one base to another: in this way program protection is achieved.
There are, however, certain occasions when controlled access to other bases,
including the permanent system base,is alloweds

Codewords are classified according to the sort of information
they describe, and the way it is represented in physical storage (see p.7),
Table 2 lists the classes and the abbreviations used for them in this
monual, In general, those system functions which operate on sets of
information are strongly dependent on codeword class, while the machine
functions, operating on single elements, are less so.

Codewords of classes AN, AC, AA and AR are similar in format to
an address, the descriptive part being used to give the codeword class.
A codeword or address M referring to a sequence of 15 data elements can
be drawn diagrammatically as:

M AN | / data

There is no need to write in the location field, since the arrow serves
the purpose. A small "tree'" consisting of a set of three codewords, one
referring to data, another to instructions, and the third undefined, has
the form:

data

/AN
M AL 2 AC
AU N\

‘ BBC

aam———ri

Soeas

A typical process base consists of from 20 to 100 such structures.

In the above diagrams, it can be seen that the desgriptive
part of the codewords applies to each element of the sequence they refer
to. Such sequences are said to be homogeneous. If the codeword is of
o class XD, however, each element of the sequence carries its own descriptor,
s in the form of a tag. Strictly speaking the process base is mixed, since
it includes the registers, but since all the other elements are thought
of as codewords the registers are given a special mixed sequence, into
which they can be stacked or "dumped" at any time to make the registers
available for some other purpose. Just one such register dump is
s associated with each process; it can be accessed cither as a nesting
f? store, or by constructing addresses pointing to sequences of elements.
e No other use is made of class XKD sequences in Applied Basic Language,

It follows that any address formed by a process must be held
either in register storage or the dump., An address pointing to part of
the program store can be formed by loading a register from a codeword,
thus producing another pointer to the same data sequence, as in the
following diagram:

1

process M § AN 14 "‘-\‘\“9
base

’ data
/
/
/
/
’
’
. /
register /
or xfaw | |
dump |

By operating on the address, the register can be made to point to any
subsequence of the original datas

process M { AN | 14
base

A \\\\\\\\\\\\\Y‘I 7 clements

register ’
or X{ AN 6 t

dump

By copying the address into another register and operating on that,
addresses referring to overlapping sequences can be constructed, and
frequently are. We are thus led to an important distinction between
addresses and codewords - that the latter are held in program storage
and are responsible for defining the information structure, whereas
addresses are formed transiently in registers (and dump) to point at
the information to be processed,

It is usual in Basic Language to refer to the sequence defined
by a codeword as a set. The operation of loading a register from a
codeword is known as codeword evaluation. If the codeword is of class
AN, AC or AA evaluation will lead to an address coinciding with the set;
class XD cannot arise from BL programs; class SB leads by address
substitution to another codeword for which the evaluation is repeated;
the remaining classes lead to interpretive actions, as described in
later sectionse.

1e1.241 Representation

The position of a set in core store has no relevance to Basic
Language instructions, which work exclusively on the structurecs defined
by the process base. If, for purpose of store management, the core
assignment has to be reorganised by moving sets within core, or from one
storage level to another, all codewords and addresses are updated by
thwe syptod. The way in which the program store is mapped into core
is called its representation. The core store is partitioned into a number
of active blocks, holding useful information, between which there may be
inactive blocks, which can be made available for use when requested.
There are several ways in which structures can be represented, the choice
between them depending on how they are used, and particularly on the way
the structure changes during a calculation.

In the absolute representation, the location number contained
in a codeword can refer to a set anywhere in the core or secondary store
system. In the relative representation, the first element of the
defined set must be a fixed distance from the codeword. Hence the set
cannot be moved without moving the codeword itself; they are bound together
- in the same block, along with other relatively represented sets.

?? Corresponding to the codeword classes already given, which contain

“ absolute codewords, are classes of relative codewords referring to data,
instructions or relative codewords (see Table 2). Diagrammatically, the
small tree defined earlier by three absolute codewords can be given in
relative form as follows:

TN
/ RC
) ~] :]

BBC

=
&

data

. The importance of relative sets is that the store management system can
‘ ignore their substructure, and deal only with the absolute codeword (M)
= defining the block in which they appear. The block is constructed, with
all appropriate internal cross-references, by the assembly program. The
disadvantage of relative sets is that their structure cannot be changed
without reassembly. TFrom the machine function point of view, there is
no distinction between the two representations.

In both forms, set elements are stored in consecutive core

locations (ascending from the first to last element), packed according to
element size, T :

i

Tele3 Logical Structure of File Storage

A data file consists of a sequence of data sets which, in
program storage, would each be described by a class AN codeword., A
structured file consists of a sequence of entities which, in program
storage, would be described by any absolute codeword,

The file store is conceived logically as a collection of data
files and structured files, to which any user has access in theory, though
by convention the construction of file names limits each user or group
of users to particular areas of the file store, The file is addressed
by giving a file name and a codeword, requesting (by means of a system
function) that the codeword be "connected" to the file. If the file
can be found, and a suitable peripheral device is available, the device
is reserved and the codeword classed as FC. Thereafter, file elements
can be selected by "positioning" the device codeword and requesting
transfers to or from appropriate elements of the program store. The
actual methods of positioning and recording are discussed in Section 8.

Like the program store, the file can be distributed over core,
drum, disc, tape,or any suitable medium. The main logical difference
between the stores is that program is addressed directly, and the
addresses are manipulated by machine functions, whereas a file can only
be accessed through a FC codeword, which allows access to one record at
a time.

Te2 Control Conventions

The cpu executes Basic Language commands which have been
translated into binary Basic code. Since therc may be more active
processes in the system than there are cpu's, the active processes are
gqueued until a cpu is available, In the experimental Basic Machine, a
process will normally run to completion, or until held up waiting for
service from another part of the system, or until a process placed
higher in a priority list joins the queue. To switch from one process
to another, the locations holding the addresses of the process base and
dump must be reloaded, and the new register contents exchanged for the
old,

A The experimental binary basic code is a two-address machine
code having two formats for instructions. In the first, two registers
X, Y and a function F are specified. F is applied to arguments defined
by X and Y, the result possibly overwriting the X argument or being
stored in XO. In the second format, an integer N is given in place of Y.
The first format requires 16 bits, and the second uses 16 or 32, includzhg
a field for N. Since the user cannot operate on BBC, details of subfields

and the several special formats encountered are not relevant to Basic
Language,

A Basic Language command translates into one or more BBRC
instructions. A sequence of BL commands translates into a sequence of
BBC, described by a codeword of class AC or RC. Relative jumps within
a sequence arce described in BL by Jjumps to labelled instruction, or by
relative line counts, the correct relative jump being computed by the
assembly program. Similarly, referencesto locally stored constants or
workspace are made by name in BL and assembled into relative half-word
counts. Jumps are also made by addressing a codeword starting from an
item in the process base, or from a local label,

The BBC control register is a singular address pointing to the
current instruction. No limit value is required since in "thin context it is
meaningless: progression from one instruction to the next is sequential
except as determined by the jump instructions. The control register
includes the arithmetic condition codes (2 bits) and control mode
indicators (3 bits). Condition codes are set by arithmetic and certain
other functions. Mode indicators are set as a result of obeying a jump
through a codeword. Their use is explained more fully in Section 3ate’ .

;» The control register may be copied into
any register to form a link address, to be used as a jump destination,
but since the user is unaware of detailed BBC structure a modified jump
is not allowed. Provision is made in BL for constructing sets of labelled

" jump destinations, which meet the requirement for computed jumps.

During assembly, labels may be stored with the binary code in
such a way that, if the code is obeyed in trace mode, the labels of
executed instructions will be output, together with other pertinent
information, as a monitoring aid., Tracing is therefore conditional on
the mode of assembly, which can be changed by re~assembling a segment of
code, and on the control mode, which can be varied during execution.

A group of 32 bits, called process status bits, is associated
with each process. Their states are referrcd to as zero (or off) and
non-zero (or on). Their main use is in communicating between system and
user programs, and they are assigned special significance in this context,
€+8., to indicate various monitoring states or to simulate a "hard overflow"
condition. The list of current assignments appears as Table 6., A
special function (PSB) is used to test and set them,

Executable BL functions are classed either as mechine functions,
which are assembled as open sequences of BBC instructions, system
functions, which are obeyed by executing jumps to system routines
permanently held in the program store. The arguments and link of system
functions are placed in register storage. The description of each
function includes the argument values and tags for which it is defined:
if the given arguments do not satisfy the requirements, an error indication
is given. Normally this involves issuing a diagnostic report and
suspending the program awaiting operator action, but it is also possible
for the user to specify error actions snd arrange for a process to be
restarted without operator intervention. The currently defined error codes
and messeges are listed in Table 7. The provisions for error monitoring
are described in Sections 6 and 8¢%ece

The normal sequencing of a process may be interrupted at any time
by a stream of BL commands. Before being interrupted, the process is said
to be at normal level of control; afterwards, it is at command level and
the source of commands is called the command input stream (CIS) file. At
command level, further interruptions are usually queued until the current
CIS terminates, although action can be taken in an emergency to regain
control of a process. All BL assembly is carried out at commsnd level:
the ability to assemble two program segments at different levels of the
same proceéss leads to some undesirable complications in language definition.,
After CIS processing has ended, normal control will be resumed where it
left off, unless CIS has specifically asked for a restart to be made from
a new entry point. When scanning the cpu queue, the highest priority
process at command level is served before any normal level process. The
mechanism of interrupting a process is explained in Section 4, At command
level, the text can be interpreted in two different ways, as explained in
Section 2,3,

s

a

10

The act of initialising the operating system is an operator-
controlled procedure which causes the system process to be started,
idling at normal level. By means of a CIS interrupt, any proccss can
be requested to start a subordinate parallel process, with a new base
and dump. The new process is placed lower thap the current one in cpu
priority, but in other respects the subordinate process has the same
rights to system resources as its progenitor. If a process P is
subordinate to @, then P is given access to part of Q's process base,
but the converse is not true. Since all processes are subordinate to the
system, they all have access to part of the system base. On a private
scale, sharing a data pool can be achieved by starting a common process
Q, which in turn starts subordinate processes P1, P2, ... etce,each having
access to its own base, to Q's and to the systemk. However, the convention
has been adopted that although reading and writing of elements in another
base is allowed, it is not permissible to effect structural changes except
in one's own base, so that the structure of the system store, for example,
cannot be changed by one of the user's processes.

-

1.3 Using the Basic Machine

The effect of the system software is to present the machine
to users as a number of parallel processes sharing a common file store,
with a restricted form of information-sharing in the program store
itself. In the experimental machine both the file and process nawming
systems are insecure, relying for their effectiveness on locally agreed
conventions, though stricter controls could easily be applied.

The first task of the user is to determine the input, output,
and working file requirements of his problem. This includes the
preparation of paper tape data files for input under his own control or
that of the Basic Language assembler, and the definition of output files,
Part of the input may also come from previously computed files, library
tapes, program dumps, etc,

The next task is to select the number of processes required,
and the program structure appropriate to each stage of each process.
For most purposes one process is adequate, but it may be possible to
make better use of peripheral devices, or to simplify programming, by
starting two or more.

New pieces of program are written as segments of Basic Language
text, to be translated into binary blocks. The choice of blocks should
be guided by the logical structure of a program, since blocks are easily
changed when correcting errors or making extensions. From the system
viewpoint, blocks of a few hundred words are preferred., The assembly
program provides a listing of the input text, together with error messages
and a summary of store assignments within a successfully assembled block,
for use in diagnosing faults. Binary basic code is not listed. The
assembled block is retained in the program store, ready for use without
further alteration, or for filing.

The design of a process must provide for its eventual death
from natural or other causes, which in turn leads to consideration of
methods of process monitoring. In the most direct instance, a process
is introduced by giving its name, and time and space requirements; then
the first few sets of data and instructions are defined by Cis.

11

The process is started by specifying an entry point and terminating CIS.
Program faults giving rise to illegal argument tags, or illegal addressing
operations, or excess of space or time demands, produce diagnostic output
(in terms of the program store structure) and then abolish the process.
Similarly for irremediable faults in transfer operations.

An alternative method of use is to embed the process in a
controlling program which attempts to take automatic action in response
to certain failure conditions. Such a program may be specially designed
for one process, or it may have general application, for example to the
class of programs written to the conventions of a particular programming
language, Any failure the control program can't handle may be resolved
by operator or on-line user action. The mechanism of control is detailed
in Section 4.2,

Finally, having prepared data, instructions, and operating notes,
it remains to the user to gain admission to the system. The capacity of
the experimental machine is govermed by storage space, device, and process
handling ability. The user or operator must ensure that the necessary
devices are, or soon will be free: otherwise the process may start and
then be held up until file connections are made., He will then attempt to
start the new process, stating the space requirement: if this cannot be
met, or if the system cannot accept a new process, the user is rejected,
and he must try again later,

It will be apparent that the basic system follows conventional
practice in many particulars, but there are certain fundamental divergences
whose effect pervades the system. Amongst them are the following:

(1) Basic Language takes the place of three Manguages' which
appear in the definition of a conventional system, isce, the
binary machine code, the symbolic assembly language, and the
operating commands, by making the first ireelswnt and unifying
the concepts of the other two.

(2) The instruction and address formats are concealed from the user,
who knows these entities by what they "do" and not by what they "are',

(3) Program storage takes the form of a group of trees (whose
detailed structure can be varied continuously under program
control), instead of a single block of stored words.

(4) The assembly program is permanently available. Program segments
can be assembled at any time and incorporated into programs
without the use of loading or consolidating routines.

(5) Function interpretation is dependent on argument tag values, and
on data descriptions appearing in addresses, as well as explicit
function codes taken from the instruction sequence.

This programming manual should preferably not be read before giving some
thought to what these interrelated assumptions must entail. Before
attempting to run a program on the experimental BIM, reference should be
made to the current Operating Manual.

24

3. Machine Instructions

A machine instruction consists of a machine function identifier
(MF), and one or more arguments. The machine function identifier may
be followed by an operator which selects one of three possible variants
of the function. The arguments are either register names, constants,
labels, or compound names; in certain cases a list of arguments is
given, separated by commas.

The syntax of machine instructions makes use of the following

abbreviations:
X for any register name
N for <integer>
S for <signed integer>
E for <aumeral>
G for <compound name>
XN for X or N
X for Xors$S
XP for a list of register names
SID for § or <identifier>
GES for G or E or § ’
XID for X or <identifier>

Function Variants

-

The general format of a machine function with two arguments is :

S

ME XS

the X term is the first argument, the XS term is the second argument.

In general, the function identified by MF is applied to operands defined
by the two arguments, the result replacing the first operand. Certain

) functions have a three-address variant in which the result is stored in
I X0; it is written:?

X ME' XS
i.e., the function identifier is followed by a prime. Certain functions
have a test-only variant which does not store the result, but only sets
the condition codes (CC); it is written:

X M xS

Fgrinidh

is.ee, the function identifier is followed by an asterisk.

The machine functions fall into four groups:

arithmetic and logical functions (Section 3.2);
addressing functions (Section 3.3)}

jump functions (Section 3.4);

tag-independent functions (Section 3.5).

St

Section 3.1 describes the interpretation of machine instructions
and gives details of data representation and handling within the machine.

Sections 3.2 to 3.5 have a common layoutb:
(i) an alphabetic list of functions described in the sectiong
(ii) general remarks applicable to all or most functions in the section;
(iii) detailed descriptions of the functions;
(iv) examples.

o

Coding examples are in Section 3.6 and exercises in Section 3.7.

Table 3 gives a summary of machine functions.

25

3.1 Interpretation of Machine Instructions

The interpretation of machine instructions is given in terms
of the argument values, register contents, and control state at the
time of execution. The following headings summarise the meaning given
to special groups of digits in addresses, and introduce notations for
describing states of interest to programmers. The next two paragrophs
refer specifically to the control register: this is a special hardware
register used in the sequencing of instructions. (Instructions are
normally obeyed in the sequence in which they appear in the program
text, except as directed by Jjump functions.) It contains information
about current control mode and condition code states. (See Section 1.2
for control conventions,)

3e1:1 Condition Codes

Condition codes are indicators stored as part of the control
register, and made available to the user for testing. They are reset
by the result of each arithmetic function to one of four states:

zero result

negative result
positive result
overflow from result

Singly or in combination, these states correspond to the standard
arithmetic conditions, which the user can test with the following
mnemonic codes:

mnemonic code (CC) last result
ZE equal to zero
NZ not equal to zero
LT negative
GT positive
LE zero or negative
GE zero or positive
oV caused overflow
NV no overfilow

Any of the eight mnemonic codes can be used with a conditional jump
(Section 3.4). Because the condition. codes are held in the control
register, they are stored when a link is set, and take their previous
value when the link address is given as destination. When obeying a
jump through a codeword the condition codes are set to zeros

3.742 Control Modes

There are three monitoring modes, the first two of which cause
the control sequence to be broken when certain conditiong arise.-
They are:

Mode 1 monitor on integer overfilow;
2 monitor on labels;
3 inhibit warnings from devices.

Each mode is independent and more than one mode can be Uon'" at the
same time,

If an integer overflow occurs in mode 1, the result is not
stored, and control is transferred to a system monitoring routine.
The standard action is to signal error (see Section 6) and await operator
action; the alternative action is to turn on a process status bit (see
Table 6), thenreturn to the interrupted sequence. For floating point
overflow the actions are similare.

If a labelled instruction is encountered in mode 2, and if it
has been assembled in trace mode (see Section 5), control is transferred
to a trace routine, which generates one or more lines of diagnostic
information on the current monitoring file (see Section 6). Normal
sequencing is then resumed.

The warning-free mode (3) can be used only by system programmers.
It is required for that part of the system dealing with warnings from
peripheral devices.

When a jump through a codeword is obeyed, the current control
modes ore "or-ed" with modes specified in the codeword. The consequence
is that if a control mode in "on'", it remains "on" through all codeword-
directed jumps; if it is "off", it remains "off" until a jump is taken
through a codeword with the mode bits "on'. The control mode can
therefore be influenced indirectly by setting the bits in codewords
(using the MODE process control function of Section 4,2); it can be
influenced directly by operating on the control register (using the
MON machine function), or by jumping to a link addresse

3.1.3 Protection, Type and Size €odes

X G §PIS | L c tag A

1 The descriptive part D of an address or codeword (see Section 1.1.1)
L is divided into two fields. The first, G, makes the primary distinction

é between codeword classes described in Section 1 (and Table 2). The

- second is an 8-bit group, PTS, which repeats some of the discrimination

of G, but makes a finer resolution of data types affecting the

interpretation of machine functions. The PTS field has the following

s format:

fasesnsayy

5
fodindid

sy

A

27

1 2 2 2
P T J00

P is the protection bit; T is a group of three type bits; the next two
bits are not used by machine functions; S is a group of two size bits,
The recogniged type and size codes describe stored elements in the
following way:

Type Size Description

0 0 binary data, 8-bit byte

o] 1 binary data, 16-bit half-word

0 2 binary data, 32-~bit word

0 3 binary data, 6i-bit double word*
1 1 BBC instruction

2 2 codeword

3 3 floating point number, 6i-bit

6 2 tagged (dump) element

Note that with the above coding, size is only relevant to data of type O.

The protection bit, when "on", can be used topevent writing
to any data element (types C and 3),

Machine functions depend primarily on the type of information
referred to by an address. A register containing the address of
information of type t is said to have "tag A(t)". Thus a control link
has tag A(1); a reference to a floating point sequence has tag A(3);
reference to codewords is by a tag A(2) register; a dump address has
tag A(6); etc. The control register describes information of type 1,
size 1.

Machine functions discriminate between integer and floating
point data representations. In register storage, integers have tag O
(see Section 1.1.1); floating point numbers have tag B and are stored
in a register pair as follows:

1 31 1. 7 f 2l
v z mantissa X ¥ e;cponent ///////j tag B

(V-registers are described in Section 3.1.6, floating point numbers
in Sections2.2 and 3.2.)

In program storage, a floating point number occupies a pair of
consecutive words, the mantissa being in the first word, the exponent in
the second. It is not normally possible to manipulate the components of
a floating point number in a register as integers, but by using the PTS
addressing function a floating point sequence can be described as an
integer sequence, giving access to the separate components,

* Only the l.s. 32 bits are processed in the arithmetic and LD functions.

28

3.1l The AutoFetch (A/F) Convention

The arithmetic, and certain addressing funetions, require their
arguments to specify one or two numerical values. An argument may be a
constant, in which case the value is implicit, or a register. The
register may hold data (tag O or B), be null (tag 1), or contain an
address of data (tag A(O) or A(3)). In the last case, the operand
retrieved from store is the first in the sequence referred to. Tag 1
will usually, tags A(1) and A(2) always, cause an error action. Binary
data of less than word size are automatically adjusted to 32 bits by
sign extension to the left. This method of argument interpretation is
known as the AutoFetch, or A/F,convention. It means, for example, that
an instruction such as:

X1 ADD X2

- has four possible interpretations, depending on the tags of X1 and X23

; (a) X1 = X1 + X2 (both data)
z (b) content (X1) = content (X1) + X2 (address, data)
\ (c) X1 = X1 + content (X2) (data, address)

\ (d) content (X1) = content (X1) + content (X2) (both address)

An interpretation similar to A/F allows the absolute jump command to
discriminate between control links in registers and stored codewords.

Note that both the A/F and the A/S (see next paragraph) conventions
i apply to the depth of one level only, i.e., to addresses of data, but
l§ not to addresses of addresses of data.

. 34745 The AutoStore (A/S) Convention

When transferring data from register to program store, the tag
of the register must conform to the type of store element addressed.
With type 6 elements, no problem arises, but for other types the
following rules applye

7 Type O elements may receive tag O or tag B data. Tag O is
o truncated to the appropriate size, possibly signalling overflow if
= significant digits are thereby lost. Tag B data are rounded to the
nearest integer value and then stored as tag O. (If the truncated part

; of the)mantissa has a value of exactly one half, rounding is "away from
i zero',

Type 3 elements may receive either tag O or tag B data, Tag B

registers are stored directly. Tag O is converted to floating point form
before storing.

Examples of rounding and truncation:
fl.pt. number resulting integer
8.3 8
i -8.3 -8
8.8 9
-8,8 -9
8.5 9
"‘8 05 ""9

Z ;
)
i
3
g

-
o

uuuu

1

3,2 Arithmetic and Logical Functions
ADD Add NOT Not
AND And NSB Position of Most Significant "1"
DIV Divide OR Cr
MPY Multiply sSC Scale
My Move SH Shift
NEQ Not Equivalent SUB Subtract
3e241 General Remarks

A1l functions set the CC according to the sign and value of the
result (see below).

Each argument must define a type O or type 3 operand, following
the A/F couvention. The logical functions (AND, OR, NEQ, NOT) require
both operandsto be type O. The remaining functions (except NSB, MV,

SC and SH) handle operands of mixed type by converting both to type 3

for the computation. The function is applied to produce a primary result
which is used to set the CC and initiate monitoring action if indicated.
(A primary result of type 3 is always in normalized form.) For the
test-only variant, the function terminates at this point. For the three-
address variant, the primary result is placed in XO. For the two-address
form of the instruction, the tag of the first argument determines:

(i) whether conversion to type O is needed; if it is, the appropriate
rounding and truncation are carried out (see Section 3.71.5).
In either case, the result of (i) is the secondary result.

(ii) whether the secondary result is placed directly in the first
argument register, or is stored by the A/S convention. Overflow
on A/S resets the CC and may cause monitoring.

The resulting type, given in the table below for various
combinations of operands,is the type of the secondary result for the two-
address form, and the type of the primary result for the three-address
variant.

type of the result of function application

type of

operands two-address form three-address variant
both integers integer integer

both floating floating floating

first integer, integer floating
second floating

first floating, floating floating
second integer

Available variants are indicated in parentheses with the formats.
Overflow may occur only in the case of ADD, DIV, MPY, MV, SC, SH, and SUB.

The value of S must be such that

-32768 < 8 < 32767

unless stated otherwise,

R

9
i

34242

ADD:

AND:

DIV:

MPY:

MV:

32

Function Details

The primary result is the arithmetic sum of the two operands.

The format is X ADD XS © {*Laariants)
e.g., X3 ADD Xk

Qverflow may occur,

The primary result is the logical product of the two operands.

The format is X AND XS (** variants)
€.8ey V6 AND #OOFF

Both operands must be of type Q.

The primary result is obtained by dividing the first operand

by the second.

The format is X DIV XS (* variant)
€.8sy X0 DIV X2

If both operands are integers, their values v must be such that

(22 ngvg

A zero divisor causes overflow to be signalled; otherwise, the

CC are set by the sign and value of the quotient.

Function forms:

(i) the two-address form: the quotient is sent to X;
the remainder is lost whatever the types of the
operandss

(ii) the three-address variant: the quotient is sent to XOj
if both operands are integers, the remainder is an
integer and has the sign of the divisory it is sent
to V0. If one or both operands are floating point
numbers, the remainder is lost.

See Example 3 in Section 3.2.3.

The primary result is the arithmetic product of the two operands.
The format is X MPY XS (# variant)
e.8.y X5 MPY X5

If both operands are integers, their values v must be such that

- 221 g v gl

and result consists of the 32 l.s. bits of the product.
Overflow may occur.

The primary result is the value of the second argument.
The format is X MV XS (* variant)
e.8., XO MV #10 :

If the types or tags of both operands are not the same, the
primary result is converted to the type or tag of the first
operand. If the first argument defines a floating point operand,
the primary result is normalized. Overflow can occur on
conversion or on A/S.

There exists a special negated form, in which the value is

negated arithmetically.

The format is X MV -X (* variant)
e.ge, X3 MV Xk

Overflow can also occur by negation.

33

NEQ: The primary result is the logical non-equivalence or symmetric
difference of the two operands.
The format is X NEQ XS (*¢ variants)
€egey V4 NEQ X5
Both operands must be of type Q.

NOT: The primary result is the logical complement of the second
operand,
The format is X N@T XS (*t variantg)
e.g., X6 NgT X6
Both operands must be of type Q.

NSB: The primary result is an integer related to the bit position of
the m.s. "M" in the second operand, as given below.
The format is X NSB X
€.gey X3 NSB X5
Denote the second operand by y, the bit position of the m.s.
"M in y by m; then the result r is as follows:
y of type 3 31
y of type O: 0

HRY
oo

1T+ m
y is negated arithmetically,
then r computed as for y > O

AV u

y 6]
y> 0
y 0]

Although the primary result depends on the second operand only,
the first argument must define an operand of type O or 3.

ja 1

OR: The primary result is the logical sum of the two operands.
The format is X @R X8 (*1 variants)
e.goy X7 @R #OFOF
Both operands must be of type O,

Lasa

i

5C: The primary result is obtained by scaling (shifting arithmetically)
the first operand by the amount specified by the second operand,

The format is X sC Xs (*1 variants)
) €.8ey X0 SC 13
f? The second argument must define an integer n such that

-6k < ng 63

The shift is left for n positive, right for n negative.

If n is defined by A/F, only the 8 1l.s. bits are taken; of these,
the m.s. bit (bit 7) is taken as the sign, bit 6 is ignored, and
bits 0(5) give |n|.

If the first operand is of type 3, the second operand is added
arithmetically to the exponent.
Overflow can occurs

|
i
i
o

3h4

SH: The primary result is obtained by shifting (logically) the
first operand by the amount specified by the second operand.
The format is X SH XS (* t variants)
c.g., X5 SH =k
The second argument must define an integer n such that

-6k g ng 63

The shift is left for n positive, right for n negative.

If n is defined by A/F, only the 8 l.s. bits are taken; of
these, the m.s. bit (bit 7) is taken as the sign, bit 6

is ignored*, and bits 0(5) give |nf.

Both operands must be of type O.

SUB: The primary result is obtained by subtracting the second
operand from the first.
The format is X SUB XS (* Yvariants)
e.g.y, X4k SUB XO
Overflow may occur.

3,243 Examples

1« Let X2 contain the integer 10510- 1101001, X3 the integer
1000111. (Leading zeros in binary = numbers have been omitted,)

7 10~

?ﬁ The following table shows a few independent commands with their
i primary results. (Within the Basic Machine, the primary result is
represented in two's complement.)

command orimary result
““““ X0 MV -X2 -105,
X2 ADD' X3 176,16
X2 SUB' X3 3k
X2 AND' X3 1000001
X2 @rR' X3 1101111
X2 NEQ' X3 df?%%?oo1o111o
ig X1 NGT X3 11?%??%0111000
X2 SH' 5 110100100000
X3 SH' -2 10001
1 X2 SC 1 210,
’ X3 MPY' 3 213,44
X2 DIV 21 510
X0 ©NSB X3 710

* On the experimental machine, bit 6 is compared with bit 7§ if they are
the same the shift is logical, but if they are different the shift is
arithmetic, In the latter case, overflow can occur.

26

3.3 Addressing Functions

IND TIndex MOD Modify

LD Load PTS Change Protection, Type, and Size.
LM Limit RMOD Replace and Modify

MEM Set Membership TAG Set Tag

363567 General Remarks

Only LD, MEM, and TAG* can set the CC. Overflow can occur only
with LD (see below), A/F applies only where specified.

Unless restricted otherwise, the values of N and 8 must be such
that
0 g N g 32767
and ~32768 <8& 32767

In general, an address with tag 2(t) can occur wherever an address with
tag A(t) is allowed; it should be kept in mind that a tag 2 address refers
only to one element and it should be used accordingly.

Available variants are indicated in parentheses.

3e342 Function Details

IND: The primary result is the index of the second argument.
The format is X IND X
esgey, X3 IND X5
The second argument must be an address with tag A(0),A(2),A(3),
or A(6). The result has tag O and is the index or current limit
of the(possibly singular) sequence addressed by the second argument.

k. 1D: The primery result is the value of the second argument, as
defined belowe
The format is X LD GES

eugey X0 LD =27 (1)
X2 1D 17 E2 (i)
X3 1D X7 (iidi)
Xk 1D ARR . (iw)

The result is placed in the first argument register. CC are set
by a tag O or tag B result, not by a tag 2 or tag A result,
Overflow can occura.

The subcases of GES are (see examples above):
. (i) 8: the result is the value of S;

(ii) E: the result is the value of E; (note that LD is the
only machine function which can have a floating
point number as an explicit argument;)

(iii) X: tag O or B: the result is copied from X;
tag A(0) or A(3): the result is obtained by A/F
ffom the address in X;
tag 1 or A(1): monitored on execution;
tag 2(n), n=0,1,2,3,6: treated like tag A(n);
tag 4(2): the result is the address formed by evaluating
L the codeword pointed at by X;
o tag A(6): the result is a copy of the dump element
(the contents of a register pair) pointed at by X3

5
il

LIM:

MOD:

PTS:

37 .

(iv) G: the result is the address of the.sequence denoted-
by the name G. :

There existo o special neguted fornw

The format is X LD =X
Cole,X3 LD ~Xk

The result is neguted aivhboeticolly; it mmest have tag O or B,

The primary result is the address obtained by limiting the

address given by the first argument to the index given by the

second operand,

The format is X LIM XN (' variant)
€eZe, X2 LIM- XO

The first argument must have tag 4(0), A(2), A(3), or A(6).

The second argument must define an integer (30) directly or

by A/F. Monitoring occurs if the resulting address is invalid

(eegs, if the second operand exceeds the index of the first

argument) o

The function tests whether the sequence pointed at by the first
argument is part of the sequence pointed at by the second argument.
The format is X MEM X

e.8., X0 MEM X2
Both arguments must be addresses with identical PIS codes; let
the first argument point at the (possibly singular) sequence T,
and let the second argument point at the sequence Z, the primary
result is as follows: if T is part (or whole) of Z,'then the
primary result is the index of the first element of T in Z; if
T is not part of Z, the primary result is a negative integer
(its value is not significant). Note that MEM is concerned only
with addresses of sequences, but not with the values of their
elements. The result has tag O and sets the CC in either case.

The primary result is the address obtained by modifying the

address given by the first argument by the value of the second

operand.

The format is X MOD XN (t variant)
e«8oy X5 MOD' X2 '

The first argument must have tag A(O), A(2), A(3), or A(6).

The second argument must define an integer (30) directly or

by A/F. The value of the second operand is used to increment '

the location contained in the address (taking account of size),

and is subtracted from the index. Monitoring occurs if the

resulting address is invalid (i.e., if the value of the second

operand exceeds the index of the first argument).

The primary result is the address obtained by adjusting the address
of the first argument to conform to the type/size codes given
by the second argument.
The format is X PIS N (' variant)
C.8ay X0 PTS O
X must be an address with tag A(O) or A(3); (if X has tag 2(0)

or 2(3), the function failsjy) N must have one of the following values:

38

N description of set elements
¢ unprotected, type O, size ©
1 " : " size 1
2 n " size 2
3 1" 1 size 3
#33 " type 3, size 3
#80 protected, type O, size O
#81 n n size 1
#82 " " size 2
#83% n 1" size 3
#B3 " type 3, size 3

The protection, type, and size codes of the first argument are
compared with N; iffall 3 conditions below are satisfied, the
function is carried out:
(i) protection state unchanged, or an unprotected set

made protected;
(ii) type unchanged, or type 3 changed into type O;
(iii) size unchanged, or changed from a larger numeric value

to a smaller one.
The resulting address has the new protection, fype, and size codes
(given by N); its index and location are adjusted to the new size.,

RMOD: The primary result is obtained by modifying wyfhersecond operand
the address resulting from evaluation of the first argument,
and setting its index to zero.

The format is X RHMOD XN (' variant)
CeBey, V2 RMOD 18
The first argument must have tag A(2). The second argument
must define an integer (30) directly or by A/F. The primary
result has tag 2. Monitoring occurs if the resulting address
is invalid (e.g., if the second operand cxceeds the index of
the address obtained from evaluation of the codeword pointed
at by the first argument).

TAG: The function sets the tag of the first argument to the value
of the second argument.
The format is X TAG N (* variant)

e.Zsy XO TAG #B

For the two-address form, the value of N must be O or #B.
The first argument must have tag O or B. If part of a long
register is set to tag O, the complementary part is nulied.
The test variant permits the following values of N: 0,1,2,#4,#B.
The tag of the first argument is compared with N, and the
result sets the CC as follows: N

tag of st argument

0 1 2 # #B

28 |GT jGT oV | OV
GT | ZE §GT ov } OV
GT JGT {zZE LT | OV
ov jov LT ZE §{ GT
oV {0V 10V GT { ZE

We =20

k1

R Jump and Control Functions
J Jump MON Set Monitoring Mode
JL Jump if Last PSB Set Process Status Bit

JNL. Jump if Not Last

Zela General Remarks

According to their nature, jumps can be described as conditional
or unconditional; according to their destination, as relative or absolute.

Conditional jumps depend on the value of the CC or of a specified
register, and are taken if the jump condition is satisfied; if it is not
satisfied, the next instruction in sequence is obeyed., They must jump to
destinations within the current block, expressed as local labels or
relative line counts in either direction (see below). A jump is conditional
if the first argument is mnemonic code (CC), or if the function is JL or JNL.

Unconditional jumps are always taken, They may be to a destination
within the current block, to a link address, or to a codeword pointing to a
block of code (AC and RC codewords). They may also plant into a specified
register a link address, which is the address of the next instruction in
sequence., When a link address is planted, the current control modes and
CC settings are saved with it; when a jump is taken to a link, the saved
control modes and CC setting are restored. When jumping to a codeword, the
current control modes are "or-ed" with those in the codeword to give a new
setting, and the current CC setting is cleared.

Relative jumps have SID as the second argument. The value of §
must be such that
-15£ 8563

and it is interpreted as a line count relative to the current line.

(Comment, erased, or blank lines are not counted.) Thus the first instruction
on the line preceding the current one has relative position -1, and the

first instruction on the line following the current one has position 1. The
relative count O refers to the first instruction on the current line. If
there are two or more instructions on a line, it is possible to jump only

to the first of them. ID is a label which must be defined elsewhere in the
current block, either before, on, or after the current line.

Absolute jumps have X, ID, or G as theznd argument; G is a compound
name defined locally or externally; X may be a codeword (tag A(2)), which
describes a block of code, or a link (tag A(1)); ID is an external name.

Function forms: no variants are available; some functions have a
special form as given below.

34,2 Function Details

J: If the jump is unconditional, the primary result is a Jjump to the
second argument; if conditional, the primary result is a jump to
the second argument if the jump comdition is satisfied, or to the
next instruction in sequence otherwise,

L2

There are five formatss:-

(1)

(ii)

(iii)

(iv)

()

JdLs

(i) cc J SID ©egay ZE I 3

(ii) J SID €eBe, J LAB

(i41) X J X e.8sy X2 J X2

(iv) J XID €eBey J X1 or J LAMP
(v) X J a e.gey X1 J CONV.3

CC must be one of the mnemonic codes (see Section 3.71.1);
conditional, relative;

unconditional, relative;

a link is sct in the first argument before the jump is taken;
unconditional, absolute;

unconditional, absoclute;

this form is recognized by the assembler as equivalent to
X L G X J X
a linkis set in the first argument; unconditional, absolute,

The primary result is a jump to the second argument if the jump
condition is satisfied; otherwise, the next instruction in sequence
is taken,
The format is X~ JL S8ID

e.8e, X3 JL =L

The jump condition and procedure depend on the tag of the first
argument. If the first argument is an address with tag A(O),

A(2), A(3), or A(6), the jump condition is satisfied if modification
by one would lead to modification overflow; otherwise, X is modified
by one. If the first argument has tag O, the jump condition is
satisfied if the value of X is O; otherwise, X is decremented by
one.

The primary result is a jump to the second argument if the jump
condition is satisfied; otherwise, the next instruction in sequence
is taken.
The format is X JNL SID

€eZey X2 JINL LAZ2

The jump condition and procedure depend on the tag of the first
argument. If the first argument is an address with tag A(0), A(2),
A(3), or A(6), the jump condition is satisfied if modification by
one would not lead to modification overflow, and modification takes
place before the jump is carried out; otherwise, X is unchanged.

If the first argument has tag O, the jump condition is satisfied if
the value of X is > 0, and the jump is taken after decrementing the
value of X by one; otherwise, X is unchanged.

.

|
.
e

b3

MON: The current control mode is altered according to the value of the
argument.
The format is MON N
.8+, MON 2

The values of N and their meanings are:

-2 turn off label trace

-1 turn off overflow monitor
K turn on overflow monitor
2 turn on label trace

The monitor codes are not additive,

PSB: The process status bit specified by the first argument is tested
and set according to the second argument.

The format is - PSB Eq’ EQ

e.gsy PSB 28,2

The original value of bit N, sets the CC to ZE (bit §1=O) or
NZ (bit N =1), Bit Eﬁ is then possibly reset according to the

value of N, as follows:
0 set bit N, to O (off)
1 set bit N, to 1 (on)
2 leave bit Eq unchanged
3 invert bit §4

The value of N, must be between 0 and 31 inclusive, See %able 6
for process status bits used by the system; bits 2L through 31 are
available to the user as flags.

z.4,3 Examples

Te It is required to write a short segment labelled "FILL" (to be
embedded into a large program) to fill a given byte set with a given
character. On entry to FILL, XO points to the first element of the byte
set, X1 holds the link, and X2 contains the given character (also a byte).
For example, the byte set may be a printing buffer, and the character may
be a blank (visible space). Cn exit from the segment, XO should point to
the last byte filled, X2 should be unchanged. Contents of X3 may be
destroyed (overwritten) by the segment. '

(i) A less efficient program segment, illustrating the use of
several functions:

FILL: X3 IND X0 <« find index of given byte set
X0 MV X2 <« fill one byte with given character
X3 JL 2 <« decrement index
X0 JNL =2 <« keep filling bytes
J X1 <« jump to link

(ii) A more efficient program segment, not using X3:

FIllL: X0 MV X23 X0 JNL O3 J X1+ loop until bytes filled

Ll

2 Let process status bit 25 be a buffer overflow indicator. It is
required to write a segment labelled "IBUF" to interrogate the indicator;
if it is off, no action is taken,and control returns to the link in X1j
if it is on, it is turned off and control proceeds to the segment "BUFZ",
where corrective measures will be applied.

TBUF: PSB 25, O < turn bit 25 off
NZ J BUFgG < indicator was on, go to BUFg
J X1 <« indicator was off, jump to link
3 Rewrite the shorter version of FILL (Example 1 above) so that after

entering the segment, one label ("FLAB") will be traced once before entering
the loop.

FILL: MgN 2 < turn on label trace
FLAB: J 1 <« dummy instruction
X0 MV X2; X0 JNL O35 J X1

A dummy instruction after "FLAB:" is necessary, because a labelled line
must contain at least one instruction.
If we wrote:

FILL: MgN 2
FLAB: X0 MV X2; X0 JNL ©O; J X1

FLAB would be traced on every pass through the loop. (The use of MON 2
presupposes that the block is assembled in lebel-tracing mode. See
Section 5.)

Since a jump to a link restores the control modes and the CC settings
(see Section 3,4.1.), it is not necessary to do '"MON - 2" to turn off the

label trace before exiting. See also Example 1 in Section 6.4 for further
use of MON,

k5

3¢5 Tag Independent Functions

CLEA Clear Register DUMP Dump Register
CPY Copy Register UNDU Undump Register
26541 General Remarks

A1l functions are concerned entirely with register manipulation,
and transfers to and from the dump. They treat the register content and
its tag as a unit; the tag is not interpreted,

CLEA, DUMP, and UNDU deal only with long register, i.e., with
V=X register pairs; they accept only X-registers as arguments.

A1l functions leave the CC unchangeds No function variants are
availables

252 Function Details

CLEA: The register pairs defined by the arguments are given tag 1.
The format is CLEA XP _
€.ge,CLEA X6, X5, X7

i - (There exists also the system function CLEA, See Section Lgle) s
CPY: The content of the register in the second argument is copied to the

s register in the first argument. The short/long register rules
1 apply (see Section 3.1.6 and Example 1 below).
The format is X CPY X

CeBey V3 CPY X5

DUMP: The register pairs defined by the arguments are copied (with their
tags), in the order given, to the top of the dump.

" The format is DUMP XP

;J Cegey DUMP %3, X1, X5, X6, X2

The dumped registers are unchanged.

 1 UNDU: The items from the top of the dump are transferred to the

s register pairs (with their tags) defined by the arguments, in the
order given,

i The format is UNDU XP

Hl ©ee UNDU X2

| 3.5.3. Examples

| 1, CPY, MV, and LD: the instruction
| X2 CPY XO
| copies the content (with tag) of XO into X2 irrespectively of the tag
i values of both X2 and X0; the instruction
X2 Mv XO
} checks the tags of X2 and XO; if they define (by A/F) operands appropriate
j for an arithmetic function, the instruction is obeyed (with A/S if indicated);
i otherwise monitoring results; the instruction
i X2 LD X0
/ is carried out as follows: the tag of ¥2 is irrelevantj the tag of XO
/ is interpreted, and the function is obeyed accordingly (see Section 3.3.21,
f setting the tag of X2 on completion.

= CLEA and LD: the instruction

CLEA X3
sets the tags of X3 and V3 to 1; the instruction
X3 1D O

sets X3 equal to O, and its tag to O. V3 is nulled if the tag of X3
was A or B, and unchanged otherwise.

Ze DUMP and UNDU: the register dump works on the last-in-first—out
(LIFO) principle. Therefore, to restore a sequence of registers previously
dumped by one BL instruction, say

DUMP X3, X1, X5
to their original contents, the sequence of names must be reversed when
undumping: .
UNDU X5, X1, X3

6. FError Monitoring and Diagnostics

Diagnostic information can be broadly classified as follows:

(i errors detected during assembly of program text;
(ii) errors detected whilst obeying program text;
(iii) selective label trace;

(iv) errors detected during peripheral transfers.

The first three are described below in Sections 6.1, 6.2, and 6.3,
respectively; the fourth is dealt with in Section 8.2.

6.1 Assembly Monitoring

There are two sorts of error report given by the assembler,
namely hard failure, which indicates an error in the input text, and
soft warning, which indicates a possible source of programming error,
i.€., a point where the assembler has had to take special action to
produce executable code.

Each error is reported by a message of the form "assembly error n"
(see Figure 6.1 for an example). The value of n, positive for hard
failures and negative for soft warnings, describes the error (see Table 8).
It would be a good exercise for the reader to determine the reason for
each error message in Figure 6.1. If the text is being assembled with
listing on (see LIST, Section 5.1), the message is output on the current
listing device immediately below the line in question. For soft warnings,
more than one message referring to the same line of text may be output.
If the text is being assembled with listing inhibited, the message is
output on the operator device (normally TW) and, according to the mode
of assembly (see Section 2), gives additional information. The message
is expanded to either "p assembly error n in direct mode' or ''p assembly
error n, line 1, block b" where p is the process name, b is the name
of the block of code and 1 is the count of the line in question (ignoring
blank and comment lines) relative to the beginning of b.

Unlike a soft warning, a hard failure ignores every character
following the failed instuction up to the next newline. Subsequent
action depends on the mode of assembly. In direct mode the END assembly
directive (see Section 5.1) is obeyed, In indirect (block assembly)
mode, remaining lines of text up to and including the END of block are
scanned so that as many potential errors as possible may be reported,
but no further code or constants are stored and the block is left
undefined; translation then continues in direct mode. A soft warning
does not curtail translation in either mode.

6.2 Error Actiorsat Run Time

Normal sequencing of a process is interrupted by failures
resulting from execution of either machine instructions (see Section 3)
or system instructions (see Section 4). Each failure is described by
an error code number (see Table 7)., By default all failures are
diagnosed by the system, which produces an interpreted error report and
terminates the failing program sequence. However, for certain types of

78

machine instruction failure there are two alternatives to the standard
error action. The user can either set a flag and continue the interrupted
sequence, or specify his own diagnostic action which enables him to
contipue or not the interrupted sequence -(see Section 6e2s1) 0

If the failing process owns & printer, then the system error
report is output on it (Figure 6.2 is a sample printout); otherwise, the
name of the failing process and the appropriate error code number are
output on the operator device (normally the typewriter). Then the
system reserves a printer, outputs a full error report, and releases the
printer. The user can also output his own diagnostics on any device he
has reserved., (In both cases, the system or user may have to wait for
the desired device to become available.)

6,271 Machine Instruction Failure

By default all such failures (see Table 7 (i)) are interpreted
by the system, and for certain failures (error codé nos. 1,2,7,8) this
is the only method of interpretation. For the remainder (error code nosSs 3y
4,5,6,9,10) alternative diagnostic action is conditional on the setting
of specific process status bits (see Section 1,2 and Table 6)e

If PSB 21 is on, control is transferred to the user's own
routine EXER, which must be defined as a single-entry block of code
(EXER SET #11). EXER is entered by a CALL from the gsystem and the user
has access to parameters in the dump which give information about the
cause and register contents at the time of failure. The system ensures
that any failures which occur within the user's routine give rise to
standard (system) error action. Exit from EXER is via a RET command,
its argument specifying the way in which control is to continue, i.e.,
either repeat the failing instruction, or continue from next instruction
in the interrupted sequence, or return to the system for the standard
. error action, or terminate the failing program sequence. 1f the user's
o error routine is no longer required ¥SB 21 should be turned off.

B If any of PSB 8 to 1k (with the exception of PSB 10) are on,
i system interpretation of the corresponding failure is curtailed and
control continues from the next instruction in the interrupted sequence
after setting a PSB flag.

.

e .

‘;g Tf neither of these alternatives is required a standard error
report is output on the printer and the failing program sequence terminated.

During normal program sequencing, instructions which give rise
to integer overflow are not monitored; instead, condition codes are set
and can be tested by the programmer, However, if the program is being
obeyed in mode 1 (see Section 3.1.2), which can be set or reset using
the MON function (see Section 3.4) or the MODE function (see Section 4.2),
integer overflow will be monitored and can be interpreted by any of the
alternatives decribed above. In contrast, floating point overflow
will always be monitored.

Example 1 in Section 6.4 illustrates the use of EXER and MON
in integer overflow handling.

fo

79

6.2.2 System Tnstruction Failure

Failures of this nature can only be monitored by the system
and are independent of the process status bits. A shortened version
of the standard error report @escribed in next Section) is output on
the printer and the failing program sequence terminated,

6423 System Error Monitoring

For all failures monitored by the system, an error report is
output which contains information concerning the type of failure, the
name of the failing process, and the contents of all registerswhich have
been stacked in the dump since the program sequence was initiated., If
this sequence was initiated by a STRT (see Section 4.2) in a user's
routine, control returns to the instruction following the STRT, with the
error code number stored in the register X2, This gives the user
another opportunity to define his own error actions. He can either
supplement the standard error report, or restart the failing program
sequence after taking corrective action, or initiate a completely
independent routine. However, if the failing program sequence was
initiated by a CALL (see Section 4.2) or J (see Section 3.4) instruction
in a user's routine, or NTRY (see Section 4.2), control returns to the
system start point which suspends the failing process waiting for
operator action. Alternatively, if the failing program sequence was
initiated by a STRT, CALL or J at command level, control returns to the
system,which terminates the CIS file.,

For machine instruction failures, additional information is
. output: the contents of each register, the condition codes (see Section 3.1.1)
i and control mode (see Section 3.1.2) settings at the time of failure,
as well as the failing instruction and its location within the block.
For system function failures, the top 8 registers in the dump correspond
to X7,X6,X5,X4,X3,X2,X1,X0 at the time of entry to the system function,
including the link back to the user's routine (see Section 4.2.1).

Each register pair is fully interpreted according to the tag and
- type of the information contained. Figure 6.2 is an example of a diagnostic
printout caused by a machine instruction failure. For registers which
address data sets, the value of each element is printed in hexadecimal on
successive line(s). At the beginning of such lines, the index in the data
of the first element on the line is printed in decimal. For byte sets
only, the set elements are printed in character form as well., For
registers which address codewords and codeword sets, the codeword
class is given. Tor registers which address one data item, the number
is printed in decimal together with a description of its size. Registers
‘ which address code are described as links; registers followed by an
s asterisk denote marked links. Registers which contain data give the

. number in both decimal and hexadecimal. Note that registers which address
| data sets, codeword sets, data, code or codewords within a structured
o ' block of code, have the index path enclosed in parentheses. For all
such registers, except links, the index given is not the true index, but
the half~word index relative to the beginning of the named block. (The
true index of an address is expressed in terms of the type and size of
the item being addressed.) For relative byte data sets only, a "4"
sign indicates the least significant byte in the half-word.

80

6.3 Label Trace

During assembly, selected labels can be stored within a block
of binary code. Each such label, provided that the code is being
executed in trace mode, will interrupt the normal sequencing of the
program text (before the instruction(s) on the labelled line have been
obeyed), The user has access to the name of the label and current
contents of the registers, and can direct that the interrupted sequence
be resumed or suspended after possibly outputting diagnostic comments.
Alternatively, he must direct the system to output a standard trace
report, given a suitably defined device, and resume normal sequencing.
Tracing is therefore conditional on the trace assembly mode, the trace
control mode, and the user's trace definition routine (if present).

The trace assembly mode is defined by the TRAC assembly
directive (sec Section 5.1).

The trace control mode is set or reset using the MON instruction
(see Section 3.4) and/or the MODE function (sec Section L,2).

The user's trace definition routine, TRDF, is a processvbased
routine which monitors every label traced. TRDF must be defined as a
single-entry block of code (TRDF SET #11), otherwise a system failure
will result (e.c.no.18). TRDF is entered from a system routine via
CATL. FExit from TRDF is via a RET command, its argument specifying
whether or not a standard trace report is required before resuming
normal sequencing.

6.3.1 Selective Tracing

The TRAC assembly directive determines which labels may
possibly be traced, and the format of such trace. (The currently
available formats are described in the Operating Manual.) Labels
assembled in "TRAC O" mode cannot be traced without reassembling the
complete routine. The MON instruction (assembly time only) and the MODE
function and TRDF routine determine which out of these possible labels
will actually be traced and under what conditionss

For example, if the user requires a particular subroutine,
which can be called by numerous other routines,always to be traced,
then the MODE function should be used to set the label=-tracing mode.
However, if the user requires that subroutine to be traced only when
used by some of his other routines, then the MON function should be used.
(Example 2 in Scction 6.4 illustrates the application of MODE and MON
in selective tracing; Example 3 in Section 3.4,% also deals with MON.,)
The MON instruction is also useful for conditional tracing within program
loops, but the conditions must be defined at assembly time. Instead,
the whole loop or mutine could be obeyed in trace mode, and TRDF used
to define trace conditions, bypass specific labels, or alter the trace
report format. For instance, TRDF is particularly useful for debugging
without reassembly of program blocks, and Example 1 in Section 6.k
illustrates its use in integer overflow handlinge

TABLE 2 ¢+ CODEWORD CLASSES

g B E&8E

BS
DC

Dz

FC
LO
PC
RC
RN
RR
RU

SB
XD

Absolute set of absolute codewords
Absolute set of code

Absolute set of data

Absolute set of relative codewords
Absolute undefined eodeword
Backing store block

Device codeword

Delayed ZERO codeword

File codeword

Lockout codeword

Process codeword

Relative set of code

Relative set of data

Relative set of relative codewords
Relative undefined codeword
Substitution codeword

Register dump

classes are grouped as follows:

Absolute: AA,AC,AN,AR,AU
Relative: RC,RN,RR,RU
Bscape: BS,DC,DZ,FC,LO,PC

Substitution: SB

Register dump: XD

111

112

TABLE 32 MACHINE FUNCTIONS
Mnemonic Variants Primary Result CC Description
ADD 1E Xy S page 32
AND r¥ x&y N 32
CLEA clear register pair 45
CpPY copy register ¥ L5
DIV ' x/y S 22
DUMP dump register pair Ls
IND index (Y) 36
J control jump S(1) k1
JL jump if last Lo
JINL jump if not last b2
LD - Y S(2) 36
LIM ' Xty 37
MEM X in Y (no A/S) 3 27
e MOD ! X'y 37
]g MON control monitor bz
. MPY ! xy S 32
o MV - ¥ 3 32
i NEQ tE XAy N 33
= NOT e not y N 33
« NSB x=signif(y) S 33
OR 1k X ory N 33
PSB set process status bit N S Lz
PTS ' change PTS code in X b4
- RMOD ' Xy 38
L SC s %27 S 33
SH P x shift y N(3) 3h
SUB v X~y s 3h
TAG * set tag X to N s(h) 38
UNDU undump register pair Ls
Notes:
| CC: § indicates CC set by result

o

N indicates CC set, but truncation overflow ignored
(1) CC set only on jumps to links or codewords

(2) CC set only if result has tag O or B

(3) N if shift, S if scale

(k) CC set only by the test variant

Arguments:
X first argument register
Y second argument register
x first operand, evaluated by A/F
Yy second operand, evaluated by A/F, or constant

113

i BLE 4: SYSTEM FUNCTIONS
*
Registers Overwritten
Mnemonic with Arguments Section Page No.
& X0 Y2 X3 X4
ABOL L2 61
ATLE + + b1 Sk
CALL + 1) 4,2 61
CLEA +(2) ho1,8.4 54,99
DIS &) 8ol 99
EXCH + + L1 56
FREE + L,2 61
GIVE + L,2 61
HALT L2 61
HEAD + + 8ol 100
MASK + + + 8ok 100
MODE + + 2,8k 62,100
NTRY + L,2 62
POSN + &) 8.4 100
RESV + + &b 101
RET (1) L2 62
- RHEZA + + &) 8okt 101
RPLY (3) + 8.4 102
SET + + &b L1 56
m STOP N ko2 62
;@3 STRT + (N k.2 62
“““ STRU + + 8ol 102
TASK + + (1 L2 62
THFER + + 1) &) 8ol 103
USER + + h.2 63
- ZERO + + (1) koq 57
Notes:

*

+
(1
(2)
(3)

X1 always overwritten with link
always overwritien

overwritten if argument present
arguments processed serially

overwritten with result

If an argument is X, and identical with the expected parameter
position, the register is unaffected by the calling sequence.

115

TABLE 6 : PROCESS STATUS BITS

Integer overflow
Exponent overflow

Store protection violation
Illegal argument tags

Modification overflow
Synchronization fault

Integer overflow control: If off, signal error; On, set PSB(O) }
Exponent overflow control:If off, signal error; On, set PSB(1)

SOV NNV WO

RS ¥

Protection violation: If off, signal error; On, set PSB(3)

‘Q 1 12 Illegal tag control: If off, signal error; On, set PSB(L)

53 13 Modification overflow: If off, signal error; On, set PSB(5)
14 Synchronization fault: If off, signal error; On, set PSB(6)
15

E 16 On: Full GTAB and STAB available to the system process

17
fﬁ 18 On: List input text on monitor device during assembly
. 19
£ 20 On: Machine or system function error has occurred

21 On: Obeying user's EXER
22 Used by diagnostics routine
- 23 Assembler use

TABLE 7 : ERRORS REPORTED AT RUN-TIME

(1)

QWO 00N W20

-8

(ii)

11
12
13
1k

15
16
17
18

19
20
21
22

23
24
25
26

Machine Instruction Failures

Illegal function or variant (assembly failure)
Access to device or undefined codeword (DV,AU,RU)
Store protection violation

Illegal tags
Modification overflow
Synchronisation error
Dump overflow

Undefined jump destination or incomplete code
Integer overflow
Exponent overflow

System Instruction Failures

Direct store allowance exceeded

Invalid file name

System failure
Time allowance exceeded

I1llegal system function arguments
No room for user

Attempt to redefine unowned structure
Monitor device required

Illegal operating command
System function used at incorrect level

116

Contains B and associated arithmetic logic.

A typical instruction, ACC+ A (say), would enter the CPU
via the IBU from the local store. It would be decoded in the
PROP and as the operand is not a descriptor, the operand would
be passed directly to Acc. If the operand were a descriptor,

ACC+ ATB} (say), PROP would pass SEOP the contents of A and SEOP
would request a word from SAC (the address of which would be obtained
by adding the Origin field of A to B.) SAC would then return the
word and SEOP format it before passing it to Acc.

In order to speed up the system, PROP contains a "Name Store"
(Aspinall, Kinniment and Edwards, 1968). Whenever PROP needs an
operand, it checks in the Name Store before doing a store access.

If the oéerand has been used previously, the Name Store will hold

its address and its value. An associlative access takes 8O0nSec instead
of 80OnSec if a memory access is required. Also, PROP is organised

as a "pipeline" (Ibbett, 1972) which means that it is processing

ore than one instruction at a time, ini.al.serial manzer, with each
stage in the processing ending in the operand being stored in a

régister.

4, BLM "Codewords™

4,1 Concepts

[

codewords are of the form;

Wnere G TAG (4 bits) - defines the type of the codeword.

Ul
3

If G=0, this codeword: is - binary data. If G=1, it is
"null.” An attempt to access this word will cause
an interrupt. If G=%A, the codeword is a descriptor.
This field is outside the normal word length, and

access to it requires a special order.

v

PROTECTION (1 bit) - defines the access pcrrmission.

If P=1l, Read Only access to this codeword.

K

TYPE (3 bits) - defines the type of the codeword.
If the codeword describes binary data, T=0. If it-

oints to the start of a sequence of machine orxders,

3

T=1. If T=2, this codeword points to other codewords.
T=1 implies that the next level in the tree contains
_floating point numbers. If T=6, the codeword points to
a "dump." A dump is a sequence of’words whose tags

are not checked when accessed.

S ' SIZE (2-bits) ~ define the size of the elements.
This field is coded as log,(Size) - 3.
L LIMIT (15 bits) - The length of codeword:sequences

defined at the next level.)
c ORIGIN (14 bits) =- The startiﬁg address of the
next level. ‘
In BLM, all the store is assumed to be tree structured.
The root of the tree is assumed to point to processes which are,
in effcct, multiprogrammed jobs. Each process:may have associated
‘with it, or may generate in the course of its execution, any number
and depth of sub-processes. Iven code seqqenées are regarded as
the leaves of sub—trees:individualforder#may not be directly accessed
without attaching a label.to them. '

Every process has a base and a dump. The .base is a set of
eight registers (labelled XO0,...,X7) and is used:either as general
registers or to hold codewords. A dump is a sequence of un-tagged
locations and is organised as a stack.

Instructions are dependent on the tags of their operands because
of the AutoFetch and AutoStore conventions. AutoFetch means that if
a base element has - tag "A," then the operand will be interpreted
as an address from which to extract the operand. AutoStore means
that an operand is interpreted either as the destination of the

data or as the address of the destination.

4,2 Order Code

As BLM has two levels of order code, it is important to
distinguish between the two. BBC (Binary Basic Code) is the
machine language; which is, unfortunately, not described in any
of the published papers on BLM. BL (Basic Language) is an auto-code
(in the sense that certain BL orders generate more than one BBC order)
and it is this language that is now presented.

BL orders are of the form;

Nl F H2

Where N1 is the first argument. It may be ecither a base clement

N2

10

or a condition code indicator. (see below)
is the function. Tunctions are divided into
four classes; _
1) arithmetic and logical functions.
2) addressing functions.
3) Fjump functions.
4) tag=-independent functions.
is the second argument. It may be either a base element

or a signed integer.

As with the explanation of the nMU5 order code, fragmentsiof

code will be presented after a subset of the orders has been given.

CLASS 1:

CLASS 2:

CLASS 3:

X IND X

X ADD X

The second operand is added to the first.

X MV X B

The second operand 1s moved to the first.

The second operand must be a codeword. The

first operand then contains the Limit field of the
second.

X ID X

The second operand is moved to the first. AutoStore
is not applied to the first operand.

X LIM X

If the first operand is a codeword, its Limit
field is set to the second operand.

X MOD X

The secona oPerand'is added to the Origin field,
and subtractéd from the Limit field,of the first
operand. Bound checking is performed.

X TAG X

— —

This can be used either for changing the tag of the

+3

first operand to the value of the second or for
checking the value of the tag. If it is used for

checking, the result is returned via the CC's (Condition
Codes.) '
Nl J M2

The first operand is a CC, it may be;

IR (Invalid Result)

LE

LT

N7 (Non~éero)

UN (Unconditional)

VR (Valid Result)

ZE (Zero)
The second operand is either a signed .integer or a
label. An integer is 1nterpreted as a relative line-
count.
If the condition is true, control is passed to the
location specified by the second operand.
X JL N2 o
The jump condition and procedure depends on the
tag of X. If the tag is %A, then X is modified by
one and if this would result in Bound overflow, a
jump is made and the modification is not performed.

the tag is O, then a jump is made if X < O or,

i—-‘.

=
Fho th

not, X is decremented by one.
X JNL .12 '
If the tag of X is %A, X modified by one and if this
does not lead to Bound overflow, a jump is made;
otherwise, X is unchanged. If the tag is O, a jump
is made if X > 0 and after decrementing Xj othewise,
X is unchanged. |
CLASS 4: X CPY X1
This copies Xl to X without the AutoFetch or AutoStore

COI’lVeIl'thHS °

. CLxamples
1) To access array elements using Iliffe Vectors.
If base elen@nt %6 contains the root codeword, then the

& /J(,
following code could be usi e

X0 CPY X6 (move codeword to work register)
X0 MOD Il (modify to -select next sub-tree)
X0 LD XO. (load next codeword)

X0 MOD I2 (2nd. subscript)

X0 LD X0

@ 09

[L

X7 LD X0 (move element to X7)
2) To £ind the sum of a vector 100 elements long.
If X6 contains a codeword for the vector, then;
X1 MV O (X1 has tag O, used for holding sum)
X0 CPY X6
L: X1 ADD XO (AutoFetch on 2nd. operand)
X0 JNL L (will cycle to end of vector)

4,3 Implementation

There is very little published information on the hardwgre
of the BLM; .see for example (ICL, 1969). It appéared to have »
been implemented using micro-programming, and as a simulator
on a ICL 1900 machine.

However, it is interesting to consider what sort of problems
would have to be solved to implement BLM with a perfofmance similar
to that on MUS. ' ‘

Two points strike one immediately;

1) The use of base elements as general registers
"is unfortunate. In order to overlap the execution
times of orders, it becomes necessary to introduce
some form of register "scoreboard." (Thornton, 1964)
2) Although the use of tagged storage is very useful,
it makes deocding of instructions more difficult,
and may cause problems with gating.

However, some of the MU5 techniques are applicable; the IBU
and PROP (apart from the difficulty mentioned above) could be used
on DLM.

Assuming that the core store of BLM is conventional; that is,
consisting of n equal length words each identified by a location,
then the tree structure suggested by Iliffe is difficult to create
~and modify during the running of the program. Further, since code
sequences are included in the structure, and since the locations
of leaves are unknown, it becomes difficult to avoid crossing page'

boundarys in a program with a fair number of control transfers.

5. Comparison between MU5 and BLM

The principal difference between MU5 and BLHM is that where BLII

O
S

treats codewords as central to its structure, !NUS descriptors are
included simply to ease the burden of accessing data structures.
BLM assumes that programmers understand structure accessing, hence
the AutoFetch and AutoStore conventions: MU5 helps programmers

by forcing them to be explicit in their structure accessing.

In a sense, this reflects the difference in level between the. two
maciiines.

The use of tagged storage in BLM is of dubious value considering
the extra hardware needed, but as:it eliminates the need for the
large order code of MU5 it is perhaps justified.

A comparison of the size of code compiled is difficult; both
machines have features that would appear to introduce "break-points"
into the code used to solve large problems., However, it would appear
that the MU5 needs an average of 32 bits per subscript for an
array access, whereas BLHM needs 64 bits. However, in the second .
example (see above) BLM needs 128 bits, whereas MU5 needs 176 bits.
Again, BLM does more orders in the subscripting example and less

in the summing example. But, whereas BLIM can take advantage of the

special nature of that example, MU5 is forced to use a more general

technicue.

6. Conclusion

This paper has presented subsets of 15 and BLM order codes
and attempted a comparison between the two machines. It has not
been possible to compare the hardware of the machines, as no data

is available on BLM,

RETDRELIICES

T, Kilburn, D. Morris, J.S. Rohl and F.H. Sumncr (1968)
"A System Design Proposal"
IFIP 68,

J.K. Iliffe (1972) .
"Basic Machine Principles™ 2nd Edition.

i

MacDonald Computer Monographs.

J.K. Iliffe (1961)
"The use of the Genie system in numerical calculations®

Annual Review in Advanced Programming. Vol. 2. p.l-28.

D. Aspinall, D.J. Kinniment and D.B.G. Edwards, (1968)

"Associative memories in large computer systems?

Information Processing 68. Vol. 2.

R.N. Ibbett (1972)
“The MU5 instruction pipeline®

Computer Journal. Vol.l5, No. 1. p.42-50.

International Computers Ltd. (1969)

User Manual for BLM

T D . Tlhoraton (196 L)

A a C&Mfwkéf-C;WO®(0&&16600'

v ’)‘A 2 0(.&8&.3/\

11

22 #:S:A; wﬁfiﬁ*‘”ﬁﬁ—%
;:W'liﬂfﬁiﬂgi_;ﬁﬂﬁ 20 CHARACTERS -ON-THLS LENE

